RuleCommunicationOfCell0_Controller3.csp~ 8.88 KB
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
include "sequence_aux.csp"
include "function_aux.csp"
include "auxiliar.csp"
include "rules.csp"
datatype Direction = req | ack
Value = {1..3}
CellId = {0..3}
channel rd : Direction.Value
channel wrt : Direction.Value
channel write : CellId.Direction.Value
channel read : CellId.Direction.Value
channel input : Value
channel output : Value


BricRingCell = wrt.req?x -> wrt.ack.x -> rd.req?dumb -> rd.ack!x -> BricRingCell


maxbuff = 4

maxring = maxbuff - 1

Controller =
let ControllerState(cache,size,top,bot) =
InputController(cache,size,top,bot) [] OutputController(cache,size,top,bot)

InputController(cache,size,top,bot) =
size < maxbuff & input?x -> (size == 0 & ControllerState(x,1,top,bot)
[]
size > 0 & write.top.req!x -> write.top.ack?dumb -> ControllerState(cache,size+1,(top%maxring)+1,bot))

OutputController(cache,size,top,bot) =
size > 0 & output!cache -> (size > 1 &
-- A requisição de leitura não ser uma "escolha externa (via input on dumb)" para que o processo seja Strong Output Decisive
-- read.bot.req?dumb -> read.bot.ack?x -> ControllerState(x,size-1,top,(bot%maxring)+1)
(|~| dumb:Value @ read.bot.req.dumb -> read.bot.ack?x -> ControllerState(x,size-1,top,(bot%maxring)+1))
[]
size == 1 & ControllerState(cache,0,top,bot))

within
-- The initial value of the cache is irrelevant, since the size is 0.
ControllerState(0,0,1,1)


channel rd0 : Direction.Value
channel wrt0 : Direction.Value
channel input3 : Value
channel output3 : Value
channel write3 : CellId.Direction.Value
channel read3 : CellId.Direction.Value


PROT_CELL(e) = |~| v2:Value @ e.req?v1 -> e.ack.v2 -> PROT_CELL(e)
DUAL_PROT_CELL(e) = |~| v1:Value @ e.req.v1 -> e.ack?v2 -> DUAL_PROT_CELL(e)

PROT_CTRL(e) = |~| v1:Value @ e.req.v1 -> e.ack?v2 -> PROT_CTRL(e)
DUAL_PROT_CTRL(e) = |~| v2:Value @ e.req?v1 -> e.ack.v2 -> DUAL_PROT_CTRL(e)


Inst_Cell0 = <(rd,rd0),(wrt,wrt0)>
Cell0 = rename(BricRingCell, Inst_Cell0)

Inst_Controller3 = <(input,input3),(output,output3),(write,write3),(read,read3)>
Controller3 = rename(Controller, Inst_Controller3)


GET_CHANNELS(P) =
let f =
<
(Cell0, { rd0,wrt0 }),

(Controller3, { input3,output3,write3,read3 }),

(PROT_IMP_Cell0_wrt0,{wrt0}),

(PROT_IMP_Controller3_write3,{write3}) >

within apply(f,P )

inputs( P ) =
let f =
<
( Cell0, {| rd0.req,wrt0.req |}),
( Controller3, {| input3,write3.1.ack,write3.2.ack,write3.3.ack,read3.1.ack,read3.2.ack,read3.3.ack |}),
(PROT_IMP_Cell0_wrt0,inputs_PROT_IMP(Cell0,wrt0)),

(PROT_IMP_Controller3_write3,inputs_PROT_IMP(Controller3,write3)),

(PROT_IMP_Cell0_wrt0_R_IO_write3,inputs_R_IO(PROT_IMP_Cell0_wrt0,wrt0,write3)),

(PROT_IMP_Controller3_write3_R_IO_wrt0,inputs_R_IO(PROT_IMP_Controller3_write3,write3,wrt0)),

(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3,outputs(PROT_IMP_Cell0_wrt0_R_IO_write3)),

(DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0,outputs(PROT_IMP_Controller3_write3_R_IO_wrt0))
>

within apply(f, P )


outputs( P ) =
let f =
<
( Cell0, {| rd0.ack,wrt0.ack |}),
( Controller3, {| output3,write3.1.req,write3.2.req,write3.3.req,read3.1.req,read3.2.req,read3.3.req |}),
(PROT_IMP_Cell0_wrt0,outputs_PROT_IMP(Cell0,wrt0)),

(PROT_IMP_Controller3_write3,outputs_PROT_IMP(Controller3,write3)),

(PROT_IMP_Cell0_wrt0_R_IO_write3,outputs_R_IO(Cell0,wrt0,write3)),

(PROT_IMP_Controller3_write3_R_IO_wrt0,outputs_R_IO(Cell0,write3,wrt0)),

(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3,inputs(PROT_IMP_Cell0_wrt0_R_IO_write3)),

(DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0,inputs(PROT_IMP_Controller3_write3_R_IO_wrt0))
>

within apply(f, P )

PROT_IMP_Cell0_wrt0 = PROT_CELL(wrt0)
PROT_IMP_Controller3_write3 = PROT_CTRL(write.1)


DUAL_PROT_IMP_Cell0_wrt0 = DUAL_PROT_CELL(wrt0)
DUAL_PROT_IMP_Controller3_write3 = DUAL_PROT_CTRL(write.1)

PROT_IMP_Cell0_wrt0_R_IO_write3 = PROT_IMP_R(PROT_IMP_Cell0_wrt0,R_IO(Cell0,wrt0,write3))
PROT_IMP_Controller3_write3_R_IO_wrt0 = PROT_IMP_R(PROT_IMP_Controller3_write3,R_IO(Controller3,write3,wrt0))

DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 = DUAL_PROT_IMP_R(DUAL_PROT_IMP_Cell0_wrt0,R_IO(Cell0,wrt0,write3))
DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 = DUAL_PROT_IMP_R(DUAL_PROT_IMP_Controller3_write3,R_IO(Controller3,write3,wrt0))

--COMMUNICATION COMPOSITION

Cell0_Controller3 = COMM(Cell0, Controller3, wrt0, write3)


--D.1 channel1 is in the alphabet of contract

assert not Cell0 \ {|wrt0|} [T= Cell0



--D.1 channel1 is in the alphabet of contract

assert not Controller3 \ {|write3|} [T= Controller3

--D.4 : I/O confluence for first component
--D.4.1 It is divergence-free


assert PROT_IMP_Cell0_wrt0 :[divergence free [FD]]

--D.4.2 It is refined by the projection on the channel

assert PROT_IMP_Cell0_wrt0 [F= PROT_IMP_def(Cell0,wrt0)

--D.4.3 It is a refinement of the projection on the channel

assert PROT_IMP_def(Cell0,wrt0) [FD= PROT_IMP_Cell0_wrt0

--D.4.4 It is a port-protocol (communication protocol)


--D.4.4.1
assert not Test(subseteq(inputs_PROT_IMP(Cell0,wrt0),{|wrt0|})) [T= ERROR

--D.4.4.2
assert not Test(subseteq(outputs_PROT_IMP(Cell0,wrt0),{|wrt0|})) [T= ERROR

--D.4.5 : The renamed version is I/O Confluent

assert InBufferProt(PROT_IMP_Cell0_wrt0_R_IO_write3, wrt0.1) :[deterministic [F]]

--D.5 : I/O confluence for second component
--D.5.1


assert PROT_IMP_Controller3_write3 :[divergence free [FD]]

--D.5.2

assert PROT_IMP_Controller3_write3 [F= PROT_IMP_def(Controller3,write3)

--D.5.3

assert PROT_IMP_def(Controller3,write3) [FD= PROT_IMP_Controller3_write3

--D.5.4


--D.5.4.1
assert not Test(subseteq(inputs_PROT_IMP(Controller3,write3),{|write3|})) [T= ERROR

--D.5.4.2
assert not Test(subseteq(outputs_PROT_IMP(Controller3,write3),{|write3|})) [T= ERROR

--D.5.5 : The renamed version is I/O Confluent

assert InBufferProt(PROT_IMP_Controller3_write3_R_IO_wrt0, write3) :[deterministic [F]]

---- D.6: Protocols are Strong Compatible
assert PROT_IMP_Cell0_wrt0_R_IO_write3 :[deadlock free [FD]]

---- * D.6.2: Protocols are communication protocols
assert not Test(subseteq(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {| wrt0|})) [T= ERROR
assert not Test(subseteq(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {|write3|})) [T= ERROR
assert not Test(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == outputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR

assert not Test(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == inputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR

assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [T= PROT_IMP_Cell0_wrt0_R_IO_write3

assert PROT_IMP_Cell0_wrt0_R_IO_write3 [T= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3



assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [F= PROT_IMP_Controller3_write3_R_IO_wrt0



assert PROT_IMP_Controller3_write3_R_IO_wrt0 [F= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3

---- D.6: Protocols are Strong Compatible
assert PROT_IMP_Cell0_wrt0_R_IO_write3 :[deadlock free [FD]]

---- * D.6.2: Protocols are communication protocols
assert not Test(subseteq(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {| wrt0|})) [T= ERROR
assert not Test(subseteq(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {|write3|})) [T= ERROR
assert not Test(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == outputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR

assert not Test(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == inputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR

assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [T= PROT_IMP_Cell0_wrt0_R_IO_write3

assert PROT_IMP_Cell0_wrt0_R_IO_write3 [T= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3



assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [F= PROT_IMP_Controller3_write3_R_IO_wrt0



assert PROT_IMP_Controller3_write3_R_IO_wrt0 [F= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3

assert PROT_IMP_Controller3_write3_R_IO_wrt0 :[deadlock free [FD]]

assert not Test(subseteq(inputs(PROT_IMP_Controller3_write3_R_IO_wrt0), {| write3|})) [T= ERROR
assert not Test(subseteq(outputs(PROT_IMP_Controller3_write3_R_IO_wrt0), {| wrt0|})) [T= ERROR
assert not Test(inputs(PROT_IMP_Controller3_write3_R_IO_wrt0) == outputs(DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0)) [T= ERROR
assert not Test(outputs(PROT_IMP_Controller3_write3_R_IO_wrt0) == inputs(DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0)) [T= ERROR
assert DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 [T= PROT_IMP_Controller3_write3_R_IO_wrt0

assert PROT_IMP_Controller3_write3_R_IO_wrt0 [T= DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0



assert DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 [F= PROT_IMP_Cell0_wrt0_R_IO_write3



assert PROT_IMP_Cell0_wrt0_R_IO_write3 [F= DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0

--D.7: Protocols have Finite Output Property

--D.7.1

assert PROT_IMP_Cell0_wrt0_R_IO_write3 \ outputs(PROT_IMP_Cell0_wrt0_R_IO_write3):[divergence free [FD]]

assert PROT_IMP_Controller3_write3_R_IO_wrt0 \ outputs(PROT_IMP_Controller3_write3_R_IO_wrt0):[divergence free [FD]]