Blame view
BRIC/cspFiles/RuleCommunicationOfCell0_Controller3.csp~
8.88 KB
eeb5cac08
![]() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
include "sequence_aux.csp" include "function_aux.csp" include "auxiliar.csp" include "rules.csp" datatype Direction = req | ack Value = {1..3} CellId = {0..3} channel rd : Direction.Value channel wrt : Direction.Value channel write : CellId.Direction.Value channel read : CellId.Direction.Value channel input : Value channel output : Value BricRingCell = wrt.req?x -> wrt.ack.x -> rd.req?dumb -> rd.ack!x -> BricRingCell maxbuff = 4 maxring = maxbuff - 1 Controller = let ControllerState(cache,size,top,bot) = InputController(cache,size,top,bot) [] OutputController(cache,size,top,bot) InputController(cache,size,top,bot) = size < maxbuff & input?x -> (size == 0 & ControllerState(x,1,top,bot) [] size > 0 & write.top.req!x -> write.top.ack?dumb -> ControllerState(cache,size+1,(top%maxring)+1,bot)) OutputController(cache,size,top,bot) = size > 0 & output!cache -> (size > 1 & -- A requisição de leitura não ser uma "escolha externa (via input on dumb)" para que o processo seja Strong Output Decisive -- read.bot.req?dumb -> read.bot.ack?x -> ControllerState(x,size-1,top,(bot%maxring)+1) (|~| dumb:Value @ read.bot.req.dumb -> read.bot.ack?x -> ControllerState(x,size-1,top,(bot%maxring)+1)) [] size == 1 & ControllerState(cache,0,top,bot)) within -- The initial value of the cache is irrelevant, since the size is 0. ControllerState(0,0,1,1) channel rd0 : Direction.Value channel wrt0 : Direction.Value channel input3 : Value channel output3 : Value channel write3 : CellId.Direction.Value channel read3 : CellId.Direction.Value PROT_CELL(e) = |~| v2:Value @ e.req?v1 -> e.ack.v2 -> PROT_CELL(e) DUAL_PROT_CELL(e) = |~| v1:Value @ e.req.v1 -> e.ack?v2 -> DUAL_PROT_CELL(e) PROT_CTRL(e) = |~| v1:Value @ e.req.v1 -> e.ack?v2 -> PROT_CTRL(e) DUAL_PROT_CTRL(e) = |~| v2:Value @ e.req?v1 -> e.ack.v2 -> DUAL_PROT_CTRL(e) Inst_Cell0 = <(rd,rd0),(wrt,wrt0)> Cell0 = rename(BricRingCell, Inst_Cell0) Inst_Controller3 = <(input,input3),(output,output3),(write,write3),(read,read3)> Controller3 = rename(Controller, Inst_Controller3) GET_CHANNELS(P) = let f = < (Cell0, { rd0,wrt0 }), (Controller3, { input3,output3,write3,read3 }), (PROT_IMP_Cell0_wrt0,{wrt0}), (PROT_IMP_Controller3_write3,{write3}) > within apply(f,P ) inputs( P ) = let f = < ( Cell0, {| rd0.req,wrt0.req |}), ( Controller3, {| input3,write3.1.ack,write3.2.ack,write3.3.ack,read3.1.ack,read3.2.ack,read3.3.ack |}), (PROT_IMP_Cell0_wrt0,inputs_PROT_IMP(Cell0,wrt0)), (PROT_IMP_Controller3_write3,inputs_PROT_IMP(Controller3,write3)), (PROT_IMP_Cell0_wrt0_R_IO_write3,inputs_R_IO(PROT_IMP_Cell0_wrt0,wrt0,write3)), (PROT_IMP_Controller3_write3_R_IO_wrt0,inputs_R_IO(PROT_IMP_Controller3_write3,write3,wrt0)), (DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3,outputs(PROT_IMP_Cell0_wrt0_R_IO_write3)), (DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0,outputs(PROT_IMP_Controller3_write3_R_IO_wrt0)) > within apply(f, P ) outputs( P ) = let f = < ( Cell0, {| rd0.ack,wrt0.ack |}), ( Controller3, {| output3,write3.1.req,write3.2.req,write3.3.req,read3.1.req,read3.2.req,read3.3.req |}), (PROT_IMP_Cell0_wrt0,outputs_PROT_IMP(Cell0,wrt0)), (PROT_IMP_Controller3_write3,outputs_PROT_IMP(Controller3,write3)), (PROT_IMP_Cell0_wrt0_R_IO_write3,outputs_R_IO(Cell0,wrt0,write3)), (PROT_IMP_Controller3_write3_R_IO_wrt0,outputs_R_IO(Cell0,write3,wrt0)), (DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3,inputs(PROT_IMP_Cell0_wrt0_R_IO_write3)), (DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0,inputs(PROT_IMP_Controller3_write3_R_IO_wrt0)) > within apply(f, P ) PROT_IMP_Cell0_wrt0 = PROT_CELL(wrt0) PROT_IMP_Controller3_write3 = PROT_CTRL(write.1) DUAL_PROT_IMP_Cell0_wrt0 = DUAL_PROT_CELL(wrt0) DUAL_PROT_IMP_Controller3_write3 = DUAL_PROT_CTRL(write.1) PROT_IMP_Cell0_wrt0_R_IO_write3 = PROT_IMP_R(PROT_IMP_Cell0_wrt0,R_IO(Cell0,wrt0,write3)) PROT_IMP_Controller3_write3_R_IO_wrt0 = PROT_IMP_R(PROT_IMP_Controller3_write3,R_IO(Controller3,write3,wrt0)) DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 = DUAL_PROT_IMP_R(DUAL_PROT_IMP_Cell0_wrt0,R_IO(Cell0,wrt0,write3)) DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 = DUAL_PROT_IMP_R(DUAL_PROT_IMP_Controller3_write3,R_IO(Controller3,write3,wrt0)) --COMMUNICATION COMPOSITION Cell0_Controller3 = COMM(Cell0, Controller3, wrt0, write3) --D.1 channel1 is in the alphabet of contract assert not Cell0 \ {|wrt0|} [T= Cell0 --D.1 channel1 is in the alphabet of contract assert not Controller3 \ {|write3|} [T= Controller3 --D.4 : I/O confluence for first component --D.4.1 It is divergence-free assert PROT_IMP_Cell0_wrt0 :[divergence free [FD]] --D.4.2 It is refined by the projection on the channel assert PROT_IMP_Cell0_wrt0 [F= PROT_IMP_def(Cell0,wrt0) --D.4.3 It is a refinement of the projection on the channel assert PROT_IMP_def(Cell0,wrt0) [FD= PROT_IMP_Cell0_wrt0 --D.4.4 It is a port-protocol (communication protocol) --D.4.4.1 assert not Test(subseteq(inputs_PROT_IMP(Cell0,wrt0),{|wrt0|})) [T= ERROR --D.4.4.2 assert not Test(subseteq(outputs_PROT_IMP(Cell0,wrt0),{|wrt0|})) [T= ERROR --D.4.5 : The renamed version is I/O Confluent assert InBufferProt(PROT_IMP_Cell0_wrt0_R_IO_write3, wrt0.1) :[deterministic [F]] --D.5 : I/O confluence for second component --D.5.1 assert PROT_IMP_Controller3_write3 :[divergence free [FD]] --D.5.2 assert PROT_IMP_Controller3_write3 [F= PROT_IMP_def(Controller3,write3) --D.5.3 assert PROT_IMP_def(Controller3,write3) [FD= PROT_IMP_Controller3_write3 --D.5.4 --D.5.4.1 assert not Test(subseteq(inputs_PROT_IMP(Controller3,write3),{|write3|})) [T= ERROR --D.5.4.2 assert not Test(subseteq(outputs_PROT_IMP(Controller3,write3),{|write3|})) [T= ERROR --D.5.5 : The renamed version is I/O Confluent assert InBufferProt(PROT_IMP_Controller3_write3_R_IO_wrt0, write3) :[deterministic [F]] ---- D.6: Protocols are Strong Compatible assert PROT_IMP_Cell0_wrt0_R_IO_write3 :[deadlock free [FD]] ---- * D.6.2: Protocols are communication protocols assert not Test(subseteq(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {| wrt0|})) [T= ERROR assert not Test(subseteq(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {|write3|})) [T= ERROR assert not Test(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == outputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR assert not Test(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == inputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [T= PROT_IMP_Cell0_wrt0_R_IO_write3 assert PROT_IMP_Cell0_wrt0_R_IO_write3 [T= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [F= PROT_IMP_Controller3_write3_R_IO_wrt0 assert PROT_IMP_Controller3_write3_R_IO_wrt0 [F= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 ---- D.6: Protocols are Strong Compatible assert PROT_IMP_Cell0_wrt0_R_IO_write3 :[deadlock free [FD]] ---- * D.6.2: Protocols are communication protocols assert not Test(subseteq(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {| wrt0|})) [T= ERROR assert not Test(subseteq(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3), {|write3|})) [T= ERROR assert not Test(inputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == outputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR assert not Test(outputs(PROT_IMP_Cell0_wrt0_R_IO_write3) == inputs(DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3)) [T= ERROR assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [T= PROT_IMP_Cell0_wrt0_R_IO_write3 assert PROT_IMP_Cell0_wrt0_R_IO_write3 [T= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 assert DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 [F= PROT_IMP_Controller3_write3_R_IO_wrt0 assert PROT_IMP_Controller3_write3_R_IO_wrt0 [F= DUAL_PROT_IMP_Cell0_wrt0_R_IO_write3 assert PROT_IMP_Controller3_write3_R_IO_wrt0 :[deadlock free [FD]] assert not Test(subseteq(inputs(PROT_IMP_Controller3_write3_R_IO_wrt0), {| write3|})) [T= ERROR assert not Test(subseteq(outputs(PROT_IMP_Controller3_write3_R_IO_wrt0), {| wrt0|})) [T= ERROR assert not Test(inputs(PROT_IMP_Controller3_write3_R_IO_wrt0) == outputs(DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0)) [T= ERROR assert not Test(outputs(PROT_IMP_Controller3_write3_R_IO_wrt0) == inputs(DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0)) [T= ERROR assert DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 [T= PROT_IMP_Controller3_write3_R_IO_wrt0 assert PROT_IMP_Controller3_write3_R_IO_wrt0 [T= DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 assert DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 [F= PROT_IMP_Cell0_wrt0_R_IO_write3 assert PROT_IMP_Cell0_wrt0_R_IO_write3 [F= DUAL_PROT_IMP_Controller3_write3_R_IO_wrt0 --D.7: Protocols have Finite Output Property --D.7.1 assert PROT_IMP_Cell0_wrt0_R_IO_write3 \ outputs(PROT_IMP_Cell0_wrt0_R_IO_write3):[divergence free [FD]] assert PROT_IMP_Controller3_write3_R_IO_wrt0 \ outputs(PROT_IMP_Controller3_write3_R_IO_wrt0):[divergence free [FD]] |