;;Proof Obligations of Module in Harvey/SMT Language
(benchmark filePO0
:logic UNKNOWN
:extrasorts (Int)
:extrafuns ((MININT Int)
(MAXINT Int))
:extrafuns ((MININT Int)
(MAXINT Int))
:extrafuns ( (second' Int )
(minute' Int ))
:extrafuns ((MININT Int)
(MAXINT Int))
:extrapreds ((INTEGER Int)
(NATURAL Int))
:extramacros ((in (lambda (?x Int) (?p (Int boolean)) . (?p ?x)))
(emptyset (lambda (?v Int) . false))
(omega (lambda (?x Int) . true))
(singleton (lambda (?x Int) . (lambda (?y Int) . (= ?x ?y))))
(intersection (lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) . (and (?p ?x) (?q ?x)))))
(union (lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) . (or (?p ?x) (?q ?x)))))
(difference (lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) .
(and (?p ?x) (not (?q ?x))))))
(symmetric_difference
(lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) .
(or (and (?p ?x) (not (?q ?x)))
(and (?q ?x) (not (?p ?x)))))))
(subset (lambda (?p (Int boolean)) (?q (Int boolean)) .
(forall (?x Int) . (implies (?p ?x) (?q ?x)))))
(range (lambda (?n Int) (?m Int) .
(lambda (?x Int) . (and (<= ?x ?m) (<= ?n ?x))))
) )
:assumption (= MININT (~ 2147483647) )
:assumption (= MAXINT 2147483647)
:assumption (forall (?i Int) (iff (in ?i INTEGER) (and (<= MININT ?i) (<= ?i MAXINT))))
:assumption (forall (?i Int) (iff (in ?i NATURAL) (and (<= 0 ?i) (<= ?i MAXINT))))
;;UNKOWN-PO
:formula (not
(iff (and (and (and (and (in second' (range 0 59)) (and (in minute' (range 0 59)) true)) true) true) (and (= second' minute') (= minute' 0))) (and (= second' 0) (= minute' 0)))
)
)