exemploGerado1.smt 2.05 KB
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
;;Proof Obligations of Module in Harvey/SMT Language
(benchmark filePO0
:logic UNKNOWN
:extrasorts (Int)
:extrafuns ((MININT Int)
(MAXINT Int))
:extrafuns ((MININT Int)
(MAXINT Int))
:extrafuns ( (second Int ))
:extrafuns ((MININT Int)
(MAXINT Int))
:extrapreds ((INTEGER Int)
(NATURAL Int))
:extramacros ((in (lambda (?x Int) (?p (Int boolean)) . (?p ?x)))
(emptyset (lambda (?v Int) . false))
(omega (lambda (?x Int) . true))
(singleton (lambda (?x Int) . (lambda (?y Int) . (= ?x ?y))))
(intersection (lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) . (and (?p ?x) (?q ?x)))))
(union (lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) . (or (?p ?x) (?q ?x)))))
(difference (lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) .
(and (?p ?x) (not (?q ?x))))))
(symmetric_difference
(lambda (?p (Int boolean)) (?q (Int boolean)) .
(lambda (?x Int) .
(or (and (?p ?x) (not (?q ?x)))
(and (?q ?x) (not (?p ?x)))))))
(subset (lambda (?p (Int boolean)) (?q (Int boolean)) .
(forall (?x Int) . (implies (?p ?x) (?q ?x)))))
(range (lambda (?n Int).
(lambda (?m Int).
(lambda (?x Int).
(and (<= ?x ?m) (<= ?n ?x) ) ))))
)

:assumption (= MININT (~ 2147483647) )
:assumption (= MAXINT 2147483647)
:assumption (forall (?i Int) (iff (in ?i INTEGER) (and (<= MININT ?i) (<= ?i MAXINT))))
:assumption (forall (?i Int) (iff (in ?i NATURAL) (and (<= 0 ?i) (<= ?i MAXINT))))
;;UNKOWN-PO
:formula (not
(iff (and (and (and (and (in second (range 0 59)) true) true) true) (= second 0)) (= second 0)))
)
)