
Integrating SMT-solvers in Z and B Tools

A. C. Gurgel
∗
, V. G. Medeiros Jr., M. V. M. Oliveira and D. B. P. Déharbe

Departamento de Informática e Matemática Aplicada, UFRN, Brazil

An important frequent task in both Z [14] and B [1] is the proof of verification
conditions (VCs). In Z and B, VCs can be predicates to be discharged as a result
of refinement steps, some safety properties (preconditions) or domain checking.
Ideally, a tool that supports any Z and B technique should among other tasks,
automatically discharge as many VCs as possible. Here, we present ZB2SMT 1,
a Java package designed to clearly and directly integrate both Z and B tools
to the satisfiability module theory (SMT) solvers such as veriT [3], a first-order
logic (FOL) theorem prover that accepts the SMT syntax [12] as input. By
having the SMT syntax as target we are able to easily integrate with further
eleven automatic theorem provers that are also compatible like [5,2,7].

veriT provides an open framework to generate certifiable proofs, having a
decent efficiency [3] that does not compromise the performance of the tools in
usual developments. Its input format is the SMT-LIB language extended with
macro definitions. This syntactic facility uses lambda notation and is particu-
larly useful to write formulas containing simple set constructions. This feature
enhances the ability of veriT to handle sets, making the solver an interesting
tool in formal development efforts in set-based modelling languages.

This prover is used by Batcave [9], an open source tool that generates VCs for
the B method. Batcave has a friendly graphic interface and supports B specifica-
tion with representation in XML format. It uses a parser from the JBTools [13]
that is composed by the B Object Library (BOL).

CRefine [11] is a tool that supports the use of the Circus refinement calculus.
Circus [4] is a concurrent language tailored for refinement that combines Z with
CSP [6] and the refinement calculus[10]. CRefine allows the automatic application
of refinement laws and discharge of VCs. Much of the VCs generated to validate
the refinement law applications, are based on FOL predicates. Hence, CRefine
uses veriT to automatically prove such predicates.

In order to allow reuse, we have developed the package ZB2SMT, which in-
tegrates elements of Z and B predicates in a common language and transforms
these predicates into SMT syntax. ZB2SMT uses an extension of BOL to repre-
sent B predicates. On the other hand, the package uses a framework provided
by the Community Z Tools (CZT) [8], an ongoing effort that implements tools
for standard Z, to represent Z predicates.

In ZB2SMT, Z predicates are converted to B predicates, using the extension
of BOL. The extension is needed due to the fact that there are Z operators that
do not exist in BOL like the symmetric difference operator. Extending BOL by
including these missing operators, we improve the set of predicates that can be
∗

The ANP supports the work of the author through the prh22 project.
1 ZB2SMT is freely available at http://www.consiste.dimap.ufrn.br/projetos/zb2smt.



Fig. 1. Collaboration Diagram of ZB2SMT elements

treated by ZB2SMT. These predicates are translated into a SMT syntax and
written to a file that contains the predicate and some elements such as types
of variables, operators definition and set properties that are described over the
macro feature. The SMT file is sent to veriT which yields a boolean value for
the predicate. On successful evaluation of the predicate, the resulting value is
returned. If, however, the evaluation is not successful, veriT can be used to
return a SMT file that may be sent to others SMT solvers. This kind of file is
a bit different from the original input of veriT since others SMT solvers do not
have the peculiarity of macros definition. ZB2SMT allows an integration with
the others SMT provers using the conversion from SMT-verit to SMT-pure by
veriT.

The application of formal development to large programs generally produces
a great amount of VCs. Perform an automatic proof module in only one processor
may be impracticable. In order to improve the performance of the proof system,
the ZB2SMT has a module that can call different instances of theorem provers
on different computers, using socket and Java’s thread. The flow of execution of
the module in ZB2SMT is illustrated in Figure 1. For conciseness, Figure 1 does
not show the conversion from Z to B predicates.

This module has two parts: the client with the information about each pos-
sible instance of theorem prover, which can be local or remote, and the server
with the theorem prover installed locally. The user creates a configuration for
each instance of theorem prover in a file. It contains the following information:
path of theorem prover, parameters and the host machine.

The parallelization process replicates VCs and tries to solve by different
strategies. Each instance of theorem prover has its own set of specifics strategies
and parameters to try to solve the VCs. Thus, the user can create and explore
different strategies possibly making the proof process more efficient.

The motivation for our work is to provide a direct verification engine to
discharge VCs from Z, B or extensions of their tools. ZB2SMT has been effective
and promising in the first experiences in CRefine and Batcave. It can be directly
used, like a black box, by tools that work with the CZT framework for Z or B
tools which use the BOL library. Furthermore, ZB2SMT offers an easy way to
get SMT files from B or Z predicates. Currently, we are embedding, by adjusting
parameters and path configurations, others SMT solvers in ZB2SMT.

The parallelism inside ZB2SMT has been an important feature. It improves
the proof process by allowing different strategies to be performed in parallel,



reducing the verification time. However, the performance of our system can be
improved even more by incorporating a predicate classifier. It would classify the
predicate and select the best available SMT solver to prove it, since some SMT
solvers are more efficient in certain types of predicates.

References

1. J. R. Abrial. The B Book: Assigning Programs to Meanings., volume 1 of 1. Cam-
bridge University Press, United States of America, 1 edition, 1996.

2. Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns,
editors, Proceedings of the 19th International Conference on Computer Aided Ver-
ification (CAV ’07), volume 4590 of Lecture Notes in Computer Science, pages
298–302. Springer-Verlag, July 2007. Berlin, Germany.

3. Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal
Fontaine. veriT: An open, trustable and efficient SMT-solver. In CADE-22 (Int’l
Conf. Automated Deduction, pages 151–156, 2009.

4. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 15(2–3):146–181, 2003.

5. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. pages 337–
340. 2008.

6. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
7. Susmit Jha, Rhishikesh Limaye, and Sanjit Seshia. Beaver: Engineering an efficient

smt solver for bit-vector arithmetic. In Computer Aided Verification, pages 668–
674. 2009.

8. P. Malik and M. Utting. CZT: A Framework for Z Tools. In H. Treharne, S. King,
M. C. Henson, and S. A. Schneider, editors, ZB, volume 3455 of Lecture Notes in
Computer Science, pages 65–84. Springer, 2005.

9. E. S. Marinho, V. G. Medeiros Jr, Cláudia Tavares, and David Déharbe. Um
ambiente de verificação automática para o método B. In A. C. V. Melo and
A. Moreira, editors, SBMF 2007: Brazilian Symposium on Formal Methods, 2007.

10. C. Morgan. Programming from Specifications. Prentice-Hall, 1994.
11. M. V. M. Oliveira, A. C. Gurgel, and C. G. de Castro. CRefine: Support for the

Circus Refinement Calculus. In Antonio Cerone and Stefan Gruner, editors, 6th
IEEE International Conferences on Software Engineering and Formal Methods,
pages 281–290. IEEE Computer Society Press, 2008. IEEE Computer Society
Press.

12. Silvio Ranise and Cesare Tinelli. The SMT-LIB Standard: Version 1.2, 2006. Avail-
able at www.SMT-LIB.org.

13. J. C. Voisinet. Jbtools: an experimental platform for the formal b method. In PPPJ
’02/IRE ’02: Proceedings of the inaugural conference on the Principles and Practice
of programming, 2002 and Proceedings of the second workshop on Intermediate
representation engineering for virtual machines, 2002, pages 137–139, Maynooth,
County Kildare, Ireland, Ireland, 2002. National University of Ireland.

14. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.


	Integrating SMT-solvers in Z and B Tools
	A. C. Gurgel, V. G. Medeiros Jr., M. V. M. Oliveira and D. B. P. Déharbe

