Blame view

circus/smt-solvers/generatedFile.smt 2.51 KB
8d0dc533f   Madiel de Souza Conserva Filho   first
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
  ;;Proof Obligations of Module in Harvey/SMT Language
  (benchmark filePO0
   :logic UNKNOWN
   :extrasorts (Int boolean)
   :extrafuns ((MININT Int)
                   (MAXINT Int) 
                   (mod Int Int Int))
   :extrafuns ( (second Int )
  		(second' Int ))
   :extrapreds ((INTEGER Int)
                     (NATURAL Int)
                     (FINSET Int)
                     (NATURAL_1 Int))
  :extramacros ((in (lambda (?x Int) (?p (Int boolean)) . (?p ?x))) 
                  (emptyset (lambda (?v Int) . false)) 
                  (omega (lambda (?x Int) . true)) 
                  (singleton (lambda (?x Int) . (lambda (?y Int) . (= ?x ?y)))) 
                  (intersection (lambda (?p (Int boolean)) (?q (Int boolean)) . 
                                        (lambda (?x Int) . (and (?p ?x) (?q ?x))))) 
                  (union (lambda (?p (Int boolean)) (?q (Int boolean)) . 
                                 (lambda (?x Int) . (or (?p ?x) (?q ?x))))) 
                  (difference (lambda (?p (Int boolean)) (?q (Int boolean)) . 
                                      (lambda (?x Int) . 
                                              (and (?p ?x) (not (?q ?x)))))) 
                  (symmetric_difference 
                   (lambda (?p (Int boolean)) (?q (Int boolean)) . 
                           (lambda (?x Int) . 
                                   (or (and (?p ?x) (not (?q ?x))) 
                                       (and (?q ?x) (not (?p ?x))))))) 
                  (subset (lambda (?p (Int boolean)) (?q (Int boolean)) . 
                                  (forall (?x Int) . (implies (?p ?x) (?q ?x))))) 
  				(range (lambda (?n Int) (?m Int) .  
                                 (lambda (?x Int) . (and  (<= ?x ?m) (<= ?n ?x)))) 
  		)                 
  		(succ (lambda (?n Int). (+ ?n 1))) 
  		(pred (lambda (?n Int). (- ?n 1))) 
  		 
  		) 
                  
  
   :assumption (= MININT (~ 2147483647) )
   :assumption (= MAXINT 2147483647)
   :assumption (forall (?i Int) (iff (in ?i INTEGER) (and (<= MININT ?i) (<= ?i MAXINT))))
   :assumption (forall (?i Int) (iff (in ?i NATURAL) (and (<= 0 ?i) (<= ?i MAXINT))))
   :assumption (forall (?i Int) (iff (in ?i NATURAL_1) (and (< 0 ?i) (<= ?i MAXINT))))
   :assumption (forall (?x Int) (?y Int) (implies (and (>= ?x 0) (> ?y 0)) (and (<= (mod ?x ?y) 0) (< (mod ?x ?y) ?y))))
  ;;UNKOWN-PO
   :formula (not 
  	(iff (and     (and     (and     (and     (in second (range 0 59))     true)     true)     (and     (and     (and     (in second' (range 0 59))     true)     true)     true))     true) (and     (in second (range 0 59))     (in second' (range 0 59))))	
  )
  )