
1 Preference order

1. Look at acceptable/reject preferences to set list of candiates;

2. Look at better/worse prefences to reduce set of candidates (providing that they are not
inconsistent (e.g. a tie));1

3. Look at best/worst preferences (providing it does not remove only candidate) to reduce
set of candidates (providing that they are not inconsistent);

4. Look at indifferent (unary and bianry) preferences. If all indifferent then choose randomly,
else if only one left choose candidate, otherwise abort as no preference can be chosen.

1. pass 1:

(a) remove all candidates that are not accepted;

(b) remove all candidates that are rejected;

2. pass 2:

(a) remove all candidates that are on the RHS of a better operator;

(b) remove all candidates that are on the LHS of a worse operator;

3. pass 3:

(a) partition candidates into best, normal, and worst lists, whilst marking if all the
candidates in the set are indifferent;

(b) choose the first set that is non-empty;

4. clean-up ...

1 A > B and best(B), B will be discounted.

15 July 2005 – 15:22 notes-0.1 Page 1



2 Model Design Notes

2.1 Transfering state

The main top-level processes within the CSP (Communicating Sequential Processes) soar model
exchange information by essentially sending and recieivng a set of update messages. The obvi-
ous modelling strategy is to provide a single event that is parameterised by the set of update
messages. This approach has a significant limitation, when considered in the context of an eager
model checker, namely, that its compiler prepares a handler for every possible set of update
messages, even if they are never used.

Aside 2.1: The number of handlers prepared by an eager model checker’s compiler
is 2n, where n is the potential number of update messages.

An alternative approach is to transmit each update message indvidually. In this case the ea-
ger model checker compiler prepares a single handler for each potential update message. This
changes the compile space from exponeitial to linear. However, the cost here is in the permuta-
tions (orders) in which a collection of messages can be sent. Therefore, a technique to choose a
single represntative sequence of update messages for each collection. This can be achived in a
variety of ways, such as providing a total order over the collection of messages and transmiting
them in that order.

Aside 2.2: The FDR (Failure-Divergence and Refinement) tool provides the chase
operator for choosing arbitrary sequence of hidden events. With care this can be
used to pick a single representative sequence of update messages for each collection,
as discussed in Appendix ??.

In summary, the top-level processes are designed to transmit their outputs in a represetative
stream of update messages, that are marked by special start and stop co-ordination events. This
has the following implications for each of the top-level processes whilst in the input mode:

1. all update messages are accepted, though they can be immediately ignored (dropped);

2. the update messages can be received in any order;

3. an indvidual update message will only be sent once, in any input session.

Page 2 notes-0.1 15 July 2005 – 15:22



3 Soar Translator

3.1 Kinds of rule

There are three kinds of rule in the CSP model, namely, proposal rules, elaboration rules, and
operation rules. The consequent capabilities of a:

proposal rule may only contain capabilities of the form propose.p set.(〈op〉, 〈pri〉, 〈eqv〉),
where 〈op〉 is a valid operation, 〈pri〉 is an integer priority, and 〈eqv〉 is a boolean
equivallence flag, which models the soar notion of operator indifference.

elaboration rule may only contain capabilities of the form wme.add.〈path〉.〈val〉, where
〈path〉 is a valid path (i.e. sequence of attribute names), and 〈val〉 is an appropriate
value. Note that these elaborated capabilities are treated in the CSP model as having
I-Support.

operation rule may only contain capabilities of the form wme.add.〈path〉.〈val〉 or wme.
del.〈path〉.〈val〉, where 〈path〉 is a valid path, and 〈val〉 is an appropriate value. Note
that these capabilities are treated in the CSP model as having O-Support.

The antecedent capabilities of a:

proposal rule may only contain capabilities of the form wme.val.〈path〉.〈val〉 or wme.size.
〈path〉.〈i〉2, where 〈path〉 is a valid path (i.e. sequence of attribute names), 〈val〉 is an
appropriate value, and 〈i〉 is an integer representing the number of values contained
in location 〈path〉.

elaboration rule may only contain capabilities of the form wme.val.〈path〉.〈val〉 or decide.
d get.〈op〉, where 〈path〉 is a valid path (i.e. sequence of attribute names), 〈val〉 is an
appropriate value, and 〈op〉 is an appropriate operation.

operation rule may only contain capabilities of the form decide.d get.〈op〉, where 〈op〉 is
an appropriate operation; it may also contain capabilities of the forms available to
the proposal rules.

The CSP soar model expects the soar2csp generator to produce three rule sets, one for each
kind of rule.

3.2 Naming conventions

The CSP soar naming conventions are as follows:

• All soar values should be contained in a single CSP datatype whose top level branches end
with the string “ v”.

• All soar attribute names should be contained in a single CSP datatype whose top level
branches end with the string “ a”.

• All soar proposal rule names should be contained in a single CSP datatype whose top level
branches end with the string “ prn”.

• The names of all soar proposal rule sets should end with the string “ pr”.

• All soar elaboration rule names should be contained in a single CSP datatype whose top
level branches end with the string “ ern”.

2 The paths in the size entries are limited to those that cannot have I-supported values. This is required for
ensuring that Soar semantics are upheld within the CSP model.

15 July 2005 – 15:22 notes-0.1 Page 3



3 Soar Translator

• The names of all soar elaboration rule sets should end with the string “ er”.

• All soar operation rule names should be contained in a single CSP datatype whose top
level branches end with the string “ orn”.

• The names of all soar operation rule sets should end with the string “ or”.

• All other generated names should end with the string “ gen”.

3.3 Interfacing with the CSP model

A soar rules should be of the form 〈rn〉, 〈AC〉, 〈CC〉, where 〈rn〉 is a valid rule name, 〈AC〉 is a
set of antecedent capabilityies, and 〈CC〉 is a set of consequence capabilities.

The CSP module representing the working memory ought to be constructed using the fol-
lowing command: WME = instance SoarHeap(PropRules, ...

Page 4 notes-0.1 15 July 2005 – 15:22



List of Abbreviations

The entries in this list of abbreviations are either general or product-specific, where: the text for
a general abbreviation is in lower-case words; and the text for a product-specific abbreviation is
in capitalised words. The only exception to this rule is when an abbreviation contains another
abbreviation, in which case the inner abbreviation is formatted as an upper case word.

CSP Communicating Sequential Processes

FDR Failure-Divergence and Refinement

15 July 2005 – 15:22 notes-0.1 Page 5


	Preference order
	Model Design Notes
	Transfering state

	Soar Translator
	Kinds of rule
	Naming conventions
	Interfacing with the CSP model

	List of Abbreviations

