
Soar

!"#$%&' (%&&")*+
,-)./0) 1))2&%+#/ 3&*24
5"+/."5 6&2)./' 7 +8*&0%."*+ 9%+%:/0/+.
9%;</&+ 6/#$+*;*:- =/+.&/

>#.*?/& @A.$ @BBC

What is Soar?

• State-Operator-And-Result

• A candidate unified theory of cognition embodied in a cognitive
architecture

• Developed by John Laird, Paul Rosenbloom and Allen Newell starting in
1982 at Carnegie Mellon University

• Ostensibly a rule-based model of human problem-solving at the
knowledge level

Soar Architecture Overview

• Long-term knowledge is encoded as “if-then” production rules which match
against and update short-term memory

• Short-term memory is represented as a connected graph of objects containing
attribute-value pairs

• Most primitive features of an AI system are addressed including automatic
sub-goaling, belief maintenance, decision making, and symbolic learning.

• Other features such as forward planning may be implemented within the Soar
language

• Interaction with the external environment is memory-mapped and amounts to
“action as command”

Soar Decision Cycle
• The execution of a Soar agent is described by the Soar decision cycle:

• The propose phase suggests operators (things to do), a fixed decision function
chooses between them, then an apply phase applies the operator and then the
cycle restarts

• Within the propose and apply phases production rules match and fire in lock-
step synchrony until no more rules may fire and acquiescence is achieved

• The model of control, i.e. how rules are matched and fire, is important as in
general there will be race conditions between competing production rules

Analysing Soar Agents

• We use a process of translation to a formal framework, followed by analysis

• Our formal framework uses CSP and model checking to perform static analysis
of Soar programs

• Analysis covers general healthiness properties, akin to exception analysis of a
conventional program

• Specific properties such as the non-occurrence of dangerous events may be
checked

Healthiness Properties

• Essentially the absence of Soar behaviours that would be considered “bad” in
any context

• Interested in bad behaviour caused by incomplete knowledge, inconsistent
world-views, erroneous production rules, rule interactions and so on

• Bad behaviour in Soar may include livelock, unintended impasses and illegal
actions

• Redundancy of production rules is also undesirable and may also be checked
for

Livelock (over decisions)

• here a Soar agent performs an infinite sequence of elaborations; productions
fire continuously and the agent never reaches the next decision

• many causes may be eliminated through judicious constraints on the Soar
language

• enabling-disabling forms of livelock are immediately detectable in CSP

• other forms of livelock such as counting require techniques such as placing
finite bounds on potentially infinite sets

Ilegal Actions

• here a Soar agent issues an actuator command that cannot or
should not be actuated

• most simulations issue a warning and simply ignore the action

• in reality such illegal actions may not be ignorable and probably
highlight problems with the agent itself

• illegal actions may be detected given a suitable model of the
environment to use as a watch-dog process

CSP Model of Soar

• Our CSP model of Soar starts with the concept of a “datamap”, a
static vision of all possible objects, attributes and values that may
exist for a given problem space

• We model Soar as a series of inference engines manipulating such
datamaps

• A particular agent is provided as data to a generic CSP model of
Soar

• Data takes the form of simple firing rules produced by automatic
translation from the original production rules, as well as type
definitions describing the possible values of all object attributes

CSP Model of Soar (2)
• The model is actually composed of three decoupled inference engines, a

decision function, (persistent) state process, and input/output processes (not
shown)

• The dotted lines represent mode changes (only one inference engine is enabled
at any one time), while the solid lines represent get/set operations on the
persistent state

CSP Model of Soar (3)

• Mode changes roughly correspond to the match-fire-update cycles within the
propose and apply phases

• Separation of the types of production rule improves the clarity of the model,
but also improves the efficiency of the CSP analysis

• Decoupling of the inference engines is only sound through constraints on the
Soar language

Soar Datamaps

• Our analysis of Soar currently expands each production rule to a number
simple firing rules over atomic facts

• As production rules match by unification the analyst must provide a description
of structure as well as data types

• To do this we use a Soar “datamap”, a map describing the possible links
between objects and possible values for simple attributes

Current Status of the Model
• The current CSP model is capable of detecting all of the healthiness properties

• However:
– the model does not yet support certain key features of Soar including sub-

goaling, and objects with multiple parents
– Detection of “operator-no-change” impasses may currently raise false-

negatives (impasses that do not exist)
– Translation is not quite complete and may require changes to the model

• Sub-goals will form the basis for a decomposition of the CSP analysis

• Multiple parents will be supported but their use sensibly constrained

! " # $? # 1 9 4 # 9 , H " 1) ' $ # (1 ')

+

% , & # < , (: / ") , 3 2 3 " 1) ' $ # (1 ') " 1 ' & , ! " # $ 5 # 1 9 4 # 9 , 7 " $ " 4 $: " 2 , 5 5 (1 9 # . 1 2

1 # 5 8) () +

3 # ' (" 1 # 5 ,) (1 6 5 4 2 , Q ^, 5 (: (1 # ' ,)) ' $ # 1 9 , " $ 4 1 (1 ' 4 (' (< , ; , & # < (" 4 $ (1 ! " # $ ^) (: / 5 (7 (,) ' & , : " 2 , 5 " 7 ! " # $ ^:#K,) '&, #1#58)() '$#6'#;5,^$,246,) '&, 14:;,$ "7 7#5),-1,9#'(<, $,)45') (1'$"246,2 '&$"49&2#;)'$#6'("1+I ") ' 2 3 " 1) ' $ # (1 ') # $,) 8 1 ' # 6 ' (6 @) " : , # $,) , : # 1 ' (6 +

H " 1) ' $ # (1 ') # $, 2 (< (2 , 2 (1 ' " 2 # 5 (/ * . ' (% * 23 " 1) ' $ # (1 ') # . 1 2 + 5 8 8 ' (% 2 " . " % * % " , (-

Soar Language Constraints (2)

• Example fundamental constraints:

– Belief-maintained rules may not contain negative actions

– An object/attribute may be created/removed by belief-maintained rules or
a normal rules but not both

– Attribute tests may not use unbound variables

– Operator proposals must specify all of their arguments

• Example current limitations:

– Production rules may not contain negated conjunctions

– Datamaps and productions may not contain cycles or many-to-one links

Soar2Csp (2)

• Features:

– A complete LALR Soar language parser/simplifier

– Automatic partition of the datamap –

Example Translation

• A Soar Blocks World production rule:
sp {propose*move-block*to-table

(state <s> ^block <block>)
(<block> ^name <a> ^on <> table ^below o)
-->
(<s> ^operator <o> + =)
(<o> ^name move-block

^block <a> ^destination table)}

production name

conditions

actions

operator name
operator proposal

Example Translation(2)

• The parsed production graph:

Example Translation (3)

• The CSP firing rules (as a set comprehension):
propose_move_block_to_table_pr = {

(propose_move_block_to_table_rn.A.BLOCK.O1,
{

wme.val.<BLOCK,below_a>.o_v,
wme.val.<BLOCK,name_a>.A,
wme.val.<BLOCK,on_a>.O1

},
{

p_set.p_uniset.(moveblock_o.table_v.A, accept),
p_set.p_uniset.(moveblock_o.table_v.A, equiv)

}
) |
BLOCK <- {block_a.n | n <- {3,1,2}},
A <- wme_vals(<BLOCK,name_a>),
O1 <- wme_vals(<BLOCK,on_a>), O1 != table_v

}

production name

operator proposal

conditions

variable generators and constraints

Current State of the Translator

• The translator works well and has now been validated in a CSP analysis of a
real UAV Soar agent

• This has revealed a few out-standing issues with the translation:

– Value tests in negated conditions are ignored

– Multi-attribute actions are translated (and perhaps modelled) incorrectly

– Operator application productions may serve multiple operators, but
translate to only one operator

– Garbage collection in Soar (i.e. recursive delete) is ignored

• Many issues were addressed during the validation

• Out-standing issues are currently handled by hand changes to the CSP
generated

Conclusions

• We have identified concrete healthiness properties of any Soar
agent

• We have identified Soar language constraints that will be useful
for modelling and analysis

• We have made significant progress towards analysing Soar
agents

• Both the formal CSP model of Soar and the Soar to CSP translator
require improvements

Questions and Answers

