
UNCLASSIFIED
QinetiQ Proprietary

Copyright © QinetiQ ltd 2004
QinetiQ Proprietary
UNCLASSIFIED

CONDITIONS OF SUPPLY

This document is supplied in confidence to MOD in accordance with Contract No
FST/EGC/077. The document consists of proprietary information, the property of
QinetiQ ltd, and is supplied to MOD under the terms of DEFCON 705 (Edn 11/02).
Except with the prior written permission of QinetiQ, MOD’s rights of use and
dissemination in the document are limited to those set out in that Condition.

Requests for permission for wider use or dissemination should be made to the relevant
QinetiQ MOD Channel Director.

Rationalising Over-Determined
Intelligence

Richard Harrison, Colin O’Halloran, Alistair McEwan, Jim
Woodcock
QinetiQ/FST/CR041616/1.0
26 March 2004

Any person finding this document should hand it to a police station or post it to the
Group Security Manager, QinetiQ Limited, Cody Technology Park, Farnborough,
Hampshire GU14 0LX, with particulars of how and where found. THE
UNAUTHORISED RETENTION OR DESTRUCTION OF THE DOCUMENT MAY BE
AN OFFENCE UNDER THE OFFICIAL SECRETS ACTS 1911 - 1989.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 2
QinetiQ Proprietary

UNCLASSIFIED

Administration page
Customer Information

Customer reference number C/EGC/N02501

Project title Flight Clearance of Autonomous UAVs

Customer Organisation MOD

Customer contact Dr C Leach, RT(RAO RD WPE and OP1)

Contract number FST/EGC/077

Milestone number EGC02/26/002/06

Date due 30 April 2004

Principal author

R D Harrison +44 (0) 1684 897254

Systems Assurance Group, Woodward
Building, QinetiQ Malvern

rdharrison2@QinetiQ.com

Prof C Ohalloran +44 (0) 1684 894320

Systems Assurance Group, Woodward
Building, QinetiQ Malvern

cmohalloran@QinetiQ.com

Prof J Woodcock 44 (0) 1227 82 4197

Computing Laboratory, University of Kent,
Canterbury

J.C.P.Woodcock@kent.ac.uk

A McEwan 44 (0) 1227 82 7234

Computing Laboratory, University of Kent,
Canterbury

A.A.McEwan@kent.ac.uk

Release Authority

Name M Downes

Post Business Group Manager, Platform Systems

Date of issue 26 March 2004

Record of changes

Issue Date Detail of Changes

1.0 26 March 2004 Initial release to customer

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 3
QinetiQ Proprietary

UNCLASSIFIED

Abstract
The objective of the present phase of the CRP project “Flight clearance of
autonomous UAVs” is to certify candidate Machine Intelligence algorithms using
formal mathematical assessment techniques. The meaning of formal in this context
is that it reduces the certification problem to small verifiable steps that can be
carried out by a machine. The certification of such Machine Intelligence algorithms
falls into two parts: the formal mathematical validation of the safety of the Machine
Intelligence algorithm; and the formal mathematical verification of the
implementation of the algorithm. This report addresses the objective of this phase of
the project by describing a subset of the Soar language that is essentially certifiable
and by providing a formal semantics for programs written in this subset that can be
verified for healthiness properties, such as deadlock or livelock. In particular the
concept of over-determined machine intelligence is taken to be over specialisation
leading to rule redundancy, which this report discusses and shows can be
automatically detected as a healthiness property. The formal semantics for the
subset of the Soar language are provided by a prototype translator from Soar into
an non-monotonic inference engine in the formal language of Communicating
Sequential Processes, CSP. Further such Soar programs can be verified against
critical properties identified by a system safety case for an autonomous UAV. Finally
the formal representation of Soar programs written in the subset can be verifiably
implemented on an FPGA via its semantic representation in CSP.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 4
QinetiQ Proprietary

UNCLASSIFIED

Executive Summary
The objective of the present phase of the project is to certify candidate Machine
Intelligence algorithms using formal mathematical assessment techniques. The
meaning of formal in this context is that it reduces the certification problem to small
verifiable steps that can be carried out by a machine.

The certification of such Machine Intelligence algorithms falls into two parts: the
formal mathematical validation of the safety of the Machine Intelligence algorithm;
and the formal mathematical verification of the implementation of the algorithm.

The objective of the work that this report discusses is to provide the validation of a
Machine Intelligence algorithm for the purpose of certifying it as safe. A candidate
Soar program is developed, as currently, then the Soar program is translated into
the CSP framework that has been developed. The translator will check that the Soar
program satisfies certain syntactic and semantic constraints that allow it to be
analysed, else it is rejected with relevant error messages. If rejected the Soar
program cannot be certified and therefore needs to be modified to satisfy the
constraints imposed by the translator.

If the translator accepts the Soar program it will produce a representation of the
Soar program within a formal CSP1 model. The model with the representation of the
Soar program can then be subjected to a pre-defined set of automated checks that
determine healthiness and safety. If the checks are all successful then the CSP
representation of the Soar program can be transformed into a form suitable for
direct compilation into a Field Programmable Gate Array, FPGA. An FPGA has low
power requirements (consequently requiring less cooling) and has massive
parallelism (which means that the CSP representation of the Soar program will be
very efficient).

In a previous report [1] from this project, a generic CSP model that accepts a set of
rules representing a Soar program was produced. The model at that time was far
from complete and translation of the Soar program was done manually. This report
is a snapshot of the design of a prototype translator from the Soar language to an
enhanced inference model in CSP. The translator implicitly defines a subset of Soar
that is analysable and the subsequent restrictions on a Soar programmer are
discussed. The report also discusses what it means for a Machine Intelligence to be
over-determined and how it can be mechanically detected.

The report addresses the objective of this phase of the project by describing the
subset of Soar that is essentially certifiable and by providing a formal semantics for
programs written in this subset that can be verified for healthiness properties.
Further, such Soar programs can be verified against critical properties identified by
a system safety case for an autonomous UAV. This is a powerful and novel
verification technique for Machine Intelligence.

Based on the results reported in this report it is recommended that:

• the formal model of Soar in CSP is extended;

• the prototype translator is extended;

1 CSP, Communicating Sequential Processes is a mathematical theory and language that
describes patterns of communication, or interaction.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 5
QinetiQ Proprietary

UNCLASSIFIED

• the analysis capabilities are validated against the Soar RoadSearch algorithm
for autonomous UAVs.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 6
QinetiQ Proprietary

UNCLASSIFIED

List of contents
1 Introduction 8

1.1 Contractual information 8
1.2 Objectives 8
1.3 Report outline 10

2 Soar 11
2.1 Soar Language Overview 11
2.1.1 Soar Production Rules and Working Memory 11
2.1.2 The Soar Synchrony Model and Belief Maintenance 12
2.1.3 The Soar Decision Cycle 12
2.1.4 Soar Sub-Goals and Impasses 13
2.1.5 Soar Input and Output 13
2.2 Return to Blocks-World 14

3 A Refined CSP Model of Soar 15
3.1 Healthiness Properties 15
3.1.1 Livelock (with respect to decisions and outputs) 15
3.1.2 Unresolvable Impasses 16
3.1.3 Cognitive dissonance (or illegal actions) 16
3.1.4 Redundant Productions. 17
3.2 The modelling approach 17
3.2.1 Our Approach 18
3.2.2 Current Status of the Model 19

4 Soar Language Constraints for analysis 21
4.1 Fundamental Constraints 21
4.2 Current Limitations 22

5 Translator Design 23
5.1 Overview 23
5.2 The Internal Representation 23
5.3 Generation 25
5.3.1 Target Environment 26
5.3.2 Semantic Analysis 27
5.3.3 Code Generation 27

6 Over-determined Intelligence 29
6.1 What is over-determined intelligence? 29
6.2 Classes of redundant rules 29
6.2.1 Non-firing rules 29
6.2.2 Unnecessary rules 30
6.2.3 Abstract modes 30
6.3 A simple example 32
6.3.1 The kettle 32

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 7
QinetiQ Proprietary

UNCLASSIFIED

7 Analysis & Examples 35
7.1 Blocks World 35
7.2 RoadSearch Case Study 36

8 Conclusions 39
8.1 Summary 39
8.2 Conclusions 39

9 Recommendations 40

10 References 41

A. Appendix A 42

B. Appendix B 45

Initial distribution list 60

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 8
QinetiQ Proprietary

UNCLASSIFIED

1 Introduction
1.1 Contractual information

This report constitutes milestone EGC02/26/002/06 for the Weapons, Platforms and
Effectors Corporate Research Programme “Flight clearance of autonomous UAVs”.

1.2 Objectives

The objective of the present phase of the project is to certify candidate Machine
Intelligence algorithms using formal mathematical assessment techniques. The
meaning of formal in this context is that it reduces the certification problem to small
verifiable steps that can be carried out by a machine.

The certification of such Machine Intelligence algorithms falls into two parts: the
formal mathematical validation of the safety of the Machine Intelligence algorithm;
and the formal mathematical verification of the implementation of the algorithm.

The objective of the work that this report discusses is to provide the validation of a
Machine Intelligence algorithm for the purpose of certifying it as safe. Figure 1
describes the relevant process for certifying Soar programs, first a candidate Soar
program is developed, as currently, then the Soar program is translated into the
CSP framework that has been developed. The translator will check that the Soar
program satisfies certain syntactic and semantic constraints that allow it to be
analysed, else it is rejected with relevant error messages. If rejected the Soar
program cannot be certified and therefore needs to be modified to satisfy the
constraints imposed by the translator.

If the translator accepts the Soar program it will produce a representation of the
Soar program within a formal CSP2 model. The model with the representation of the
Soar program can then be subjected to a pre-defined set of automated checks that
determine healthiness and safety. An example of a healthiness condition is that the
Soar program will not reach a point where it cannot make any more progress, i.e. it
is in a deadlock with its environment. Clearly in some circumstances this will be a
safety issue, but not necessarily in all circumstances. Another important healthiness
condition, unrelated to safety, is whether the program is more constrained than it
needs to be. If the program is over constrained then it will not be able to respond as
flexibly as it should, largely defeating the point of using Machine Intelligence.
Specific safety properties will be to demonstrate that a Soar program can never
perform certain dangerous actions. What actions are dangerous depends upon the
specific safety analysis that must be conducted on the whole system with respect to
a set of scenarios.

If one of the checks performed on the CSP model fails then the analysis tool, called
FDR3, reports a counterexample, i.e. under what circumstances the Soar program
will violate the property being checked. The counterexample can be used to correct
the Soar program and then translate it back into CSP for re-checking. If the checks
are all successful then the CSP representation of the Soar program can be

2 CSP, Communicating Sequential Processes is a mathematical theory and language that
describes patterns of communication, or interaction.
3 FDR stand for Failures Divergence Refinement, it performs an exhaustive state space
exploration with respect to the Failures Divergence semantic model of CSP.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 9
QinetiQ Proprietary

UNCLASSIFIED

transformed into a form suitable for direct compilation into a Field Programmable
Gate Array, FPGA. An FPGA has low power requirements (consequently requiring
less cooling) and has massive parallelism (which means that the CSP
representation of the Soar program will be very efficient).

In a previous report [1] from this project, a generic CSP model that accepts a set of
rules representing a Soar program was produced. The model at that time was far
from complete and translation of the Soar program was done manually. This report
is a snapshot of the design of a prototype translator from the Soar language to an
enhanced inference model in CSP. The translator implicitly defines a subset of Soar
that is analysable and the subsequent restrictions on a Soar programmer are
discussed. The report also discusses what it means for a Machine Intelligence to be
over-determined and how it can be mechanically detected.

The report addresses the objective of this phase of the project by describing the
subset of Soar that is essentially certifiable and by providing a formal semantics for
programs written in this subset that can be verified for healthiness properties.
Further, such Soar programs can be verified against critical properties identified by
a system safety case for an autonomous UAV. This is a powerful and novel
verification technique for Machine Intelligence.

Figure 1 the development and analysis process.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 10
QinetiQ Proprietary

UNCLASSIFIED

1.3 Report outline

The report starts with an overview of the Soar language, the task of sorting blocks
by a Soar agent is used to explain the Soar language. This is followed by section 3
which presents an enhanced CSP model that accepts a set of rules that represent a
Soar program. In particular the different healthiness conditions are discussed
including the issue of over-determined intelligence, (which itself is discussed in
more depth in section 6). The enhancements to the model have increased the
subset of the Soar language that can be accepted and analysed for safety and
healthiness properties. However not all Soar programs can be analysed within the
CSP model, hence section 4 explains the current limitations in terms of the Soar
constructs that are disallowed for analysis purposes.

Section 5 presents the design of a prototype translator from Soar into the CSP
model. This is followed, in Section 6, by an in depth discussion about what does
over-determined intelligence mean in the context of a Soar program. To illustrate
the issues and the approach taken a simple system is presented of the safety
critical “tea maid”. In section 7 an initial evaluation of the Blocks World Soar agent
described in section 2.2 is performed to illustrate the types of healthiness conditions
and how a safety property can be checked. Finally, the application of the translator
to an algorithm that defines flight paths for UAVs searching for moving vehicles (the
RoadSearch Soar algorithm) is then discussed. The report finishes with conclusions
and recommendations.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 11
QinetiQ Proprietary

UNCLASSIFIED

2 Soar
This section gives an overview of the Soar language and architecture, followed by a
description of our current CSP model of Soar and the constraints we have applied
to the Soar language. The section then ends with a return to the “Blocks-World”
example, discussed in a previous report [1] and a simple Soar agent created to
illustrate later examples

2.1 Soar Language Overview

Soar (State-Operator-And-Result) is a cognitive architecture that provides the
foundations for building systems that exhibit general intelligent behaviour. At the
first approximation, Soar is a rule-based system with (long-term) knowledge stored
as "if-then" production rules. However, Soar also provides a flexible automatic sub-
goaling mechanism as well as a general symbolic learning mechanism (known as
'chunking'). Finally, Soar provides a belief maintenance mechanism to automatically
update beliefs when their basis no longer holds. For more information, see [3] and
[4].

2.1.1 Soar Production Rules and Working Memory

A Soar system is entirely specified by a set of production rules encoding domain
knowledge. The rules are similar to "if-then" statements, the "if" part specifying a set
of conditions that must be met by the current situation and the "then" part specifying
a set of actions to perform once the conditions are met.

In Soar the current situation is represented by a working memory organised as
objects. Objects are described using attribute-value pairs, where objects may
appear as values, and attributes may have multiple (but distinct) values. Attributes
are named using strings such as size while values may be integers, floats, strings
or identifiers (denoting objects). As such the working memory may be viewed as a
directed, fully connected graph of objects rooted at a top 'state' node as in Figure 2.

Figure 2:

An example working memory composed of four objects including the top-state ‘S1’

The language of Soar production rules is very rich, with support for partial
descriptions of objects, unification of variables, predicates, negation and destructive

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 12
QinetiQ Proprietary

UNCLASSIFIED

actions (removal of working memory elements - WMEs). Although the syntax allows
for generalised constructs such as attribute paths, disjunctions and conjunctions,
these may all be expanded out into multiple conditions, actions or rules so that all
conditions and actions are essentially 3-tuples of (identifier,attribute,value).

Variables may appear in the place of identifiers, attributes or values. As identifiers
are created automatically by Soar, the identifier will always be a variable. Within a
rule, variables unify so that the conditions and actions may describe the structure of
working memory. Variables provide a mechanism to generalise rules and pass
identifiers or constants matched in the conditions to the actions. Any free variables
appearing as attributes or values in the actions are taken to be identifiers and are
created automatically by Soar.

Conditions may be negated, specifying that the condition does not match working
memory. Similarly, actions may specify the removal of working memory elements
(WMEs). Removal of WMEs is recursive, removing all elements no longer linked to
a top 'state' node (a kind of garbage collection). Lastly, conditions may be conjoined
allowing for subtle "negative" conjunctions of conditions as in "not(A and B)".

2.1.2 The Soar Synchrony Model and Belief Maintenance

The firing of all production rules is synchronised in Soar. Rules are matched in
parallel against the working memory, fired in parallel and their actions executed
before the next round of rules may match and fire. This is known in Soar as an
elaboration cycle. As attributes may have multiple values most conflicts are
avoided; remove-add conflicts are simply resolved with removal overriding addition.

An important aspect of Soar is belief maintenance. This is an automatic mechanism
that retracts non-deliberative beliefs (removes/adds WMEs) when their basis no
longer holds. Non-deliberative beliefs are taken to be the actions of production rules
that do not depend directly upon a decision. Such actions lend "support" to WMEs
so long as their conditions still hold. When a WME has no support then belief
maintenance will automatically remove the element.

Belief maintenance in Soar often results in unexpected behaviour. For instance, a
WME may have negative support resulting from non-deliberative remove actions.
When this support is removed the WME may magically reappear!

2.1.3 The Soar Decision Cycle

Central to Soar is the Problem Space Hypothesis that claims that all symbolic goal-
orientated behaviour can be cast as a search in a problem space. Here, a problem
is taken to consist of a set of states and a set of operators to move amongst these
states. States correspond to the details of the current situation (internal and
external) pertinent to the current goal while operators correspond to deliberate acts
of cognition.

In this context, Soar introduces a decision cycle as an attempt to achieve rational
behaviour4 in terms of operator selection given a current state and a body of long-
term knowledge. The cycle is composed of a propose phase in which operators are
proposed, followed by a fixed decision and finally an apply phase in which the
chosen operator is applied. Within the propose and apply phases, production rules

4 Specifically, the principle of Rationality is defined as: "If an agent has knowledge that one
of its actions will lead to one of its goals, then the agent will select that action."

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 13
QinetiQ Proprietary

UNCLASSIFIED

fire synchronously as above until no more rules are eligible to fire. A fixed decision
function chooses between proposed operators, using operator preferences created
during the propose phase to guide the selection. When an unambiguous selection is
not possible, Soar considers this to be an "impasse" signalling the need for a sub-
goal that may or may not result in progress.

Figure 3 the Soar decision cycle.

The decision cycle is an acknowledged cognitive “bottleneck”, as it forces a choice
to be made between operators that may actually proceed in parallel. However, the
cycle is a safe, general approach compared to the opposite extreme in which pure
parallelism depends upon specific executive strategies to achieve serial behaviour.
An interesting discussion on cognitive bottlenecks applicable to Soar may be found
in [5], providing a functional analysis and possible improvements to the general
architecture.

2.1.4 Soar Sub-Goals and Impasses

As described above, sub-goals in Soar arise quite naturally from an inability to
select unambiguously from the set of proposed operators. Whenever Soar is unable
to make such a decision, the system halts and a new working memory state is
created. This new state is actually a sub-state of the current state and will hold the
work of the sub-goal until its completion. The initial state of the sub-goal contains a
complete description of the immediate cause of the impasse, such as operators that
could not be decided among. Importantly, sub-states always contain a link back to
the super-state using the attribute superstate.

The sub-state behaves just as a normal state, proposing and applying operators. In
solving the sub-goal additional impasses may be encountered, each leading to a
new sub-goal and sub-state. Thus, it is possible for Soar to have a stack of sub-
goals (and sub-states). Each sub-state has a single super-state and each state may
have at most one sub-state.
To resolve an impasse, the sub-goal must generate results that allow problem
solving at higher levels to proceed. In essence, the sub-goal must modify its super-
state leading to the selection of a new operator. When this happens, Soar
automatically removes the sub-state (and all its sub-structure) before applying the
new operator and continuing as before. Note that any results (WMEs) linked to the
superstate will persist after the sub-state has been removed. For example, the
results of the sub-goal might be a plan for achieving the original goal, which another
sub-goal may then need to access in order to apply it and so on.

2.1.5 Soar Input and Output

Interaction with the external environment is achieved in Soar through predefined,
dedicated structures in the working memory. All inputs to a Soar system are
affected before the propose phase and all outputs are affected after the apply
phase. It is then up to the system designer to define the interface to Soar in terms of
expected input and output structures and their interpretation. For example, it is

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 14
QinetiQ Proprietary

UNCLASSIFIED

common to "run a Soar system till output" so that multiple internal decisions may
occur up to some bound before an output is required.

In the context of multi-agent systems the model of action is "action as command", in
which a Soar agent produces actuator commands in response to sensor
perceptions.

2.2 Return to Blocks-World

For illustration purposes we have resurrected a simple example of a planning
problem space known as Blocks World (previously examined in [1]). In Blocks World
the objective is to build a tower from a set of blocks given the usual laws of physics.
In our version, three blocks named A, B and C initially rest on a table and the goal is
to build a tower with A on top, B in the middle, and C on the bottom. The Soar agent
must then come up with a sequence of legal block movements that achieve the
task. For illustration, the effective state-space as defined by block movements is
given by Figure 4.

Figure 4 The Blocks World state space of block movements

We have written a very simple Soar agent that performs this task. To keep things
simple the agent is internalised and there are no inputs or outputs to handle. In this
sense, the agent represents a planner who manipulates an internal representation
of the blocks to formulate a plan of block movements. Currently, the agent performs
little more than a random walk through the state space and only contains 16 Soar
productions. However, it does maintain a representation of the problem using Soar
productions that may be injected with faults. In addition, we have added two belief-
maintained rules that tell the agent when a block is "in place" (and should not be
moved if possible).

We have also performed a manual translation of this Soar agent to our CSP model’s
target environment. This translation (a CSP script) serves both as a "proof-of-
concept" and as an oracle against which we may validate our prototype translator
output. This CSP script may be found in Appendix B.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 15
QinetiQ Proprietary

UNCLASSIFIED

3 A Refined CSP Model of Soar
We have chosen to model Soar as a generic inference engine, adding specific
features of Soar to our model as deemed appropriate. The model of a Soar agent is
defined indirectly in CSP as data to a generic CSP model. As in Soar, the data
takes the form of simple firing rules produced by an automatic translation from the
original Soar production rules. These firing rules are essentially the same as the
original production rules although not as expressive on an individual basis.

In modelling Soar, we have chosen a largely static approach and as a consequence
most dynamic behaviour must be evaluated statically or at least limited. In
particular, the CSP firing rules must be grounded (all variables expanded out to
constants) and we assume learning has been turned off. To allow for such a static
evaluation and to control the remaining dynamic behaviour we have chosen to place
constraints on the Soar language. These constraints are the subject of section 4
and effectively define a subset of the Soar language that is currently analysable.

3.1 Healthiness Properties

As an initial starting point to our analysis of Soar agents, we have decided to look at
healthiness properties of a Soar agent: behaviour that would be considered "bad" in
any context. This is akin to an exception analysis of a conventional program. This
analysis is at a low level and we have had to be careful not to include behaviours
that are due just to the current implementation of Soar. At the system level, we are
more interested in behaviour such as unintended impasses, which might
correspond to holes in the agent's problem space - a definite problem.

The following is a list of properties we currently check for in our analysis, and
motivates the design of our CSP model of Soar. These properties are initial
observations and could be refined or extended as needed. In describing the
properties below we make use of the terms “I-support” and “O-support” with
reference to Soar production rules and WMEs. These are roughly defined as
follows:

• A Soar production is an “O-support” rule if and only if it tests for an operator (i.e.
a decision) in its conditions, else it is an “I-support” rule.

• A Soar WME has “O-support” if it was created/removed by an “O-support” rule,
and “I-support” if it was created/removed by an “I-support” rule.

While the first definition can be implemented by a clear-cut syntactic check, the
second definition is more problematic as a given WME may be created/removed by
both “I-support” and “O-support” rules. “O-support” is associated with deliberative
actions and persistence, while “I-support” is associated with non-deliberative actions
and the belief maintenance mechanism.

3.1.1 Livelock (with respect to decisions and outputs)

This is when a Soar system performs an infinite sequence of elaborations during the
propose or apply phases of the decision cycle. Here, production rules fire
continuously and the system never reaches acquiescence (from which a decision is
made). This may be due to:

1. An enabling-disabling loop of production rules.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 16
QinetiQ Proprietary

UNCLASSIFIED

2. An infinite elaboration of the working memory state.

Enabling-disabling loops are commonly associated with belief maintained “I-
support” rules but may equally occur with just deliberative "O-support" rules. We
may outlaw much of this looping behaviour by putting constraints on the Soar
language. In particular, we may make the belief maintained "I-support" rules more
or less monotonic, i.e. the rules only ever add knowledge and do not cause other
belief maintained rules to retract. When looping behaviour does occur we may
detect it as system livelock, in which the system is capable of performing an infinite
sequence of rule firings without making a decision.

Infinite elaboration of the state is commonly associated with run-away computations
such as counting and implies infinite state - clearly a problem for our static
approach. In tackling this problem, we may try to place constraints on the Soar
language. When constraints on the language are not feasible we may take a
different approach and place bounds on the dynamic behaviour within the model
(and signal an error when the bound is exceeded).

3.1.2 Unresolvable Impasses

When a Soar agent is unable to make an unambiguous decision over which
operator to select next, Soar considers this to be an impasse. An impasse indicates
a lack of current knowledge that the Soar system attempts to resolve by
automatically formulating a sub-goal with the express purpose of gaining the
required knowledge to proceed, e.g. by enabling new production rules from its long-
term knowledge.

In most cases the impasse is intended and results in a sub-goal that makes local
progress, eventually enabling global progress. Sometimes the impasse simply
represents waiting for the situation to change; presumably affected by another
agent. We therefore have to evaluate all such impasses in a broader context.

When Soar is unable to resolve an impasse, this is usually apparent by an unending
spawning of repeated sub-goals, normally state no change impasses in which a
new operator is not selected. It is hypothesised here, that all unresolvable impasses
eventually culminate in repeated state no change impasses. For example, an
operator no change impasse in which an operator cannot be applied will invariably
result in an state no change impasse next time round the decision cycle.

The current CSP model of Soar does not address the issue of sub-goals and we
reserve this for future work. Most likely, sub-goals and their associated problem
spaces will provide an intuition for decomposition of our analysis. Currently, all
impasses - unresolvable or otherwise - are detected and raised as failures.

3.1.3 Cognitive dissonance (or illegal actions)

What happens when an agent issues an actuator command that cannot be
actuated? In Soar, this question is left up to the environment to answer. For
example in the TankSoar [6] game the environment raises a warning and ignores
the command. In a real system, an illegal action may result in more than a friendly
warning. It is therefore important in our analysis not to ignore illegal actions. In Soar,
an illegal action may be due to a simple bug in the agent or due to a disparity in the
cognitive agent’s representation of the real world, i.e. dissonance.

As an aside, the flight control technologies being developed elsewhere in this
programme, are being designed to provide agents with information on the UAV’s

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 17
QinetiQ Proprietary

UNCLASSIFIED

current capability. This may be either via warnings, raised in response to illegal
actions, or via a continuously updated parameter set which informs the agent of the
vehicles current limitations.

3.1.4 Redundant Productions.

The purpose of expressing Soar’s rules as rules within a CSP inference model is to
essentially perform a reachability analysis to determine whether “bad” states can be
reached through executing Soar rules. A “bad” state would typically be an unsafe
situation. Although the reachability analysis offers assurances that the rule set is
sufficient to achieve safety, it offers no guarantee that each of the rules are
necessary. If a rule within the CSP model is unnecessary then it could be removed
without affecting critical functional properties. A complication arises because a
single Soar rule can give rise to multiple rules in the CSP model. However checking
each of these in turn provides evidence of whether the Soar rule is redundant and
hence whether the machine intelligence embodied in the Soar rules is over-
determined. These issues are discussed in more detail in section 6.

3.2 The modelling approach

Our CSP model of Soar starts with the concept of a "datamap", a static vision of all
possible WMEs that may exist for a given problem space. The datamap is a
directed graph with WMEs as nodes and matching Soar identifiers defining the links
between nodes. There is always one root node, the top 'state' node, and the graph
must be fully connected. Usually the graph is simply a tree, but it is not uncommon
to find many-to-one links or even cycles. In the past, Soar datamaps have been
used successfully for documentation and even validation (see [7],[8]). Importantly,
there are tools available to generate such datamaps semi-automatically. Figure 5
shows a simplified datamap of the Blocks World Soar agent with WMEs annotated
with their attribute and possible values.

Figure 5 A simplified datamap of the Blocks World Soar agent

In this context, we may construct a model of Soar at the level of atomic facts
corresponding to WMEs and the actual instances of production rules that operate
over these facts. We may choose to incorporate parts of the Soar architecture into
the model or simply encode them as extra rules. Following a translation to this low-
level framework, we may then use a model checker to exhaustively search the

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 18
QinetiQ Proprietary

UNCLASSIFIED

space of possible rule firings for some of the properties described above. Any
failures found should then always be interpreted within the original Soar agent as
the model may introduce artificial failures through abstraction, i.e. false negatives.

The remainder of this section is divided into an overview of our approach and a
report on the current status of the model. Issues pertaining to the automatic
translation of Soar productions to this framework we reserve for section 5.

3.2.1 Our Approach

The primary focus of our CSP model of Soar is the atomic facts or rather WMEs that
define the state space of a Soar agent. We will assume for the time being that a
given state is defined by the truth status of each of the datamap WME nodes. In
particular, there is no way to break links between nodes, as Soar requires working
memory (as defined in our datamap by active/true nodes) to be fully connected at all
times.

Even for the Blocks-World example, the apparent state space is huge. However, the
actual state space is almost always much smaller - the graph must always be fully
connected and leaf nodes usually only have one or two possible values at a time.

If the state space of a Soar agent is defined by the truth status of each datamap
WME, then it is the Soar production rule instances that allow the agent to transition
from one state to another. Here, an "instance" is a grounding of variables to
constants. For example, in the Blocks World Soar agent each production rule
proposing to move a block corresponds to about six possible instances –
representing potential, perhaps impossible scenarios.

While variables denoting Soar constants may be grounded using the datamap,
variables that denote Soar identifiers cannot, as Soar identifiers are only generated
at run-time. Instead, we associate a Soar identifier with a single WME node in the
datamap (that in some sense declares the identifier variable). In most cases the
WME node is uniquely determined by the context. In other cases the variable may
correspond to more than one WME node. For example, in Blocks World the top
‘state’ attribute block may refer to up to three blocks (not shown in the simplified
datamap of Figure 5). This is common in Soar – such attributes are known as multi-
attributes when the same attribute name may reference multiple values.

The first enhancement we make to our generic inference engine is to add the ability
to "forget" previously learnt facts (allow it to be non-monotonic). This is an essential
component of the model, and enables us to cope with destructive actions within
production rules, i.e. removal of WMEs. Without the ability to forget it would be very
hard to represent change within a Soar agent and harder still to translate Soar
productions to our CSP model. The mechanism we use to model destructive actions
is to introduce special rules to represent the action of forgetting facts.

To model belief maintenance within Soar it is important to understand which
production rules it applies to and how the mechanism works. First of all, to repeat
part of section 2.1, belief maintenance applies precisely to productions that do not
depend directly upon a decision (a syntactic check). Such rules are known as
operator application or “O-support” rules and are understood to have persistent
actions. All other rules have belief maintenance and only "support" their actions as
long as their conditions still match. For example, when a block that is “in place” is
moved, the belief loses support and Soar automatically removes the WME
representing the belief.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 19
QinetiQ Proprietary

UNCLASSIFIED

As a mechanism, belief maintenance is usually described in stative terms of
"support" given by production rules for WMEs. However, it may also be described
as a set of implicit rules that accompany the normal production rules. In simple
terms, whenever we forget a fact that a belief maintained rule depends on we also
have the opportunity to forget its conclusions. Of course, a given fact may be
supported by more than one rule and we have to face the issue of "collective"
support.
In our modelling, “support” is taken to be the ability to re-learn a fact. If we assume
such implicit belief maintenance rules fire only once, then all WMEs that have
collective support will eventually be re-learnt. Of course, this assumes the system is
always capable of reaching a stable state. When it is not we may detect this using
our model checker - and hopefully attribute it to a failure of one of the healthiness
properties of section 3.1 above.

For illustration, the following is an example belief maintenance rule taken from our
translated Blocks World Soar agent (see Appendix B). The rule implements the
forgetting of the “in place” property of a single block and describes its potential
effects – in this case the forgetting of the “in place” properties of other blocks. This
rule is special and has the effect of forgetting its antecedents, hence the rule will
only fire once.

({Disable.wme.st.block_3.inplace.yes,
wme.st.block_3.inplace.yes},

{Disable.wme.st.block_2.inplace.yes,
Disable.wme.st.block_1.inplace.yes})

The next enhancement to our model is to give operators first class status by
modelling them as defined events as in operator.Moveblock.a.table. This
enables us to talk about operator proposals and decisions as actual events and
eases the modelling. We may then model Soar's fixed decision function as the vital
link between operator proposal and decide events. The operators and their
parameters (name, subject etc) may be extracted semi-automatically from the
datamap. In a similar manner we may also give the standard memory-mapped input
and output structures special status as defined events.

There is a high degree of synchronisation in the Soar implementation. While this is
an essential feature for the Soar programmer interested in achieving rational
behaviour, it does impose a cognitive bottleneck and in fact complicates our
modelling and analysis of Soar. In our model of Soar, we have chosen to abstract
away from most of this synchronisation and are able to explore all possible
execution sequences. This is an important step and may facilitate a massively
parallel implementation of a Soar agent on a device such as Field Programmable
Gate Array.

3.2.2 Current Status of the Model

The current CSP model of Soar is capable of detecting most of the healthiness
properties described above. However, the model is still immature and does not
support certain key features of Soar including sub-goaling, negated conditions,
operator preferences and many-to-one links (in which a WME may have more than
one parent in the datamap). In addition, the current treatment of belief maintenance
introduces an explosion in state space. The remainder of this subsection discusses
these limitations.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 20
QinetiQ Proprietary

UNCLASSIFIED

The sub-goaling feature as described in section 2.1.4 is very complicated and we do
not foresee its inclusion in the CSP model in the near future. However, subgoals will
surely be invaluable in the longer term for decomposition of our analysis. For the
time being, the analysis of a Soar agent containing sub-goals must reduce to an
analysis of its sub-goals (or rather problem spaces) and an informal argument made
to the safety of their combination. For example, we may at least check an agent
always enters and exits a sub-goal on the right conditions.

Negated conditions require a slight but significant enhancement to the CSP model
which we have withheld from the current model in order to consider its implications.
Negated conditions are an essential feature of nearly all Soar systems and we
intend to introduce them in a limited fashion (see section 4.2). For example, it is
hard to initialise a Soar system through operator applications without a check to tell
that the system isn't already initialised.

As well as proposing operators for selection, Soar productions may also specify
preferences between the proposed operators, which are then used by the fixed
decision function. The addition of such operator preferences to the CSP model
would probably only involve a slight enhancement to the CSP decide function.
Alternatively, we may ignore operator preferences and consider all proposed
operators as having indifferent preference. However, this prevents us from detecting
certain types of impasses that are a result of incomplete operator preferences.

Recall that in section 2.1 we described the removal of WMEs as recursive (or
garbage collection) in that the removal of a parent WME may result in the removal
of all its children, grandchildren and so on if they are no longer linked to the top
'state' node. We have not addressed this feature in general yet – instead we
currently put constraints on the Soar language to enable a temporary solution. If we
were to allow many-to-one links we would certainly need to address the feature
properly (as such links interact with the recursive removal). An approach to handling
such links would probably call for special rules just as for belief maintenance.

Finally, our treatment of belief maintenance introduces an explosion in the state
space of the model even for the Blocks World Soar agent. This seems to be due to
competition between the belief maintenance rules and normal inferences and is
symptomatic of a larger issue – the importance of synchronisation and control within
Soar and artificial intelligence in general. In particular, we have not modelled
elaboration cycles in Soar that separate the firing of normal rules from belief
maintenance. While we may reduce the importance of control in Soar through
constraints such as those in the following section, we may suffer from issues such
as “stale” information without an alternative model of parallel control.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 21
QinetiQ Proprietary

UNCLASSIFIED

4 Soar Language Constraints for analysis
This section describes the constraints that we have imposed on the Soar language
for our modelling and analysis. Some constraints are considered as fundamental
and non-negotiable, while others reflect current limitations of the CSP model or
prototype translator. We have therefore divided up this section accordingly. For
each constraint, we give a synopsis, a description and our rationale.

4.1 Fundamental Constraints

1. We do not allow WME identifiers to be used as attributes.

This feature does not seem to be used in practice; its meaning is unclear and would
complicate our CSP model unnecessarily. The Soar User Manual gives an example
of its use to provide meta-information about an attribute in the form of an object.

2. We do not allow negative actions in belief-maintained “I-support” rules, i.e.
reject ‘-‘ preferences.

As explained in section 2.1.2, negative (or destructive) actions and belief
maintenance is unintuitive and may result in strange, unexpected behaviour. Often,
such actions may just as well be performed using (deliberative) “O-support” rules.
We have therefore decided to outlaw negative actions within “I-support” rules.
Incidentally, this also has the effect of simplifying the model as belief maintenance
becomes more predictable.

3. A given WME may only be created/removed by an “I-support” or “O-support”
rule but not both.

When a given WME may receive both “I-support” and “O-support” we often get
unintuitive behaviour when such support is removed. In particular, later positive “I-
support” may override earlier negative “O-support”.

We have decided to outlaw such behaviours with the aim of removing potential
“bad” behaviour as in section 3.1. In our limited experience such clashes of support
appear to be rare and unnecessary. The constraint also greatly simplifies our
modelling as it allows us to partition WMEs by their behaviour. There may well be
exceptions to the rule, for instance where we want to “firm up” non-deliberative
beliefs to deliberative beliefs.

4. An “O-support” WME may not be the child of (augment) a “I-support” WME.

Following on from the previous constraint, recall that the removal of WMEs involves
a recursive removal of all (unlinked) children. This implies potential conflicts
between “I-support” and “O-support” – the removal of an “I-support" WME may in
turn cause the removal of an “O-support” WME and visa versa. In the later case, the
“I-support” WME that augments some “O-support” WME must actually depend on it
and will be removed by the action of belief maintenance anyway, and hence is not a
“conflict”.

We have decided to outlaw the first case in which an “O-support” WME augments
an “I-support” WME and may get removed simply through belief maintenance. While
this may not directly contribute to “bad” behaviour, it again complicates our
modelling and seems unnecessary.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 22
QinetiQ Proprietary

UNCLASSIFIED

5. We do not allow unbounded variables to be used in attribute tests, for instance
in “generic” Soar productions.

We have decided to outlaw, or at least curtail, the use of unbounded variables in
attribute tests. Here, an “unbounded” variable whose possible values may not be
determined within the scope of the production rule. Although quite natural,
unbounded variables seem disingenuous with “safety-critical” systems and would
undermine our static approach to modelling Soar.

Given this constraint, an attribute must test for a constant, a disjunction of
constants, or test for a variable bounded elsewhere within the production.

4.2 Current Limitations

1. The “datamap” (or production rules) may not contain any cyclic links.

To keep things simple we do not cater for cycles within the datamap or production
rules. This does not appear to be a significant restriction for production rules.
Indeed, in the RoadSearch [2] case study (discussed later in 7.2) we only found 2
productions containing cycles – one of which was a simple self-loop placed on the
standard attribute topstate, used to point to the top-level state. We have not
assessed the impact on the RoadSearch datamaps as we do not yet have complete
datamaps for the RoadSearch case study. However, it is likely there will be an
impact as the datamap must contain all possible links between WMEs.

2. We do not allow negated conditions in production rules, i.e. -^on table.

Without negated conditions, our modelling becomes much easier. However, this is a
major limitation as negated conditions are very common and useful. Further, it is
hard to see how they could be eliminated from a Soar system without a great deal of
effort.

We therefore intend to weaken the constraint above to allow negated conditions to
be used where they do not substantially complicate our modelling of Soar. We will
most probably only allow “O-support” (deliberative) conditions to be negated. In
particular, we wish to prevent negated conditions from causing problems for belief
maintenance. From inspecting the RoadSearch case study this seems a good
compromise.

For the time being, all negated conditions must be converted or eliminated. In the
Blocks World Soar agent we managed to reduce the few negated conditions to
negated tests as in “^on <> table”. This matches any WME with attribute on and
any value but table.

3. We do not allow many-to-one links between WMEs, i.e. a given WME must have
no more than one parent.

As described in section 3.2, the current CSP model does not address recursive
removal of WMEs in general. This has prevented us from handling many-to-one
links within the datamap (or production rules for that matter) as they interact with the
recursive removal procedure as described in section 2.1.1.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 23
QinetiQ Proprietary

UNCLASSIFIED

5 Translator Design

5.1 Overview

This section describes the design of a prototype translator from Soar to our CSP
model of Soar. It is the translator that is responsible for the static expansion of Soar
production rules to CSP firing rules as well as the definition of certain datatypes and
channels. Together, the products of the translator are then used as data to our
generic CSP model of Soar to form a complete CSP script representing the Soar
program. Of course, if the Soar agent interacts with an external environment the
analyst must also write a CSP process to model the behaviour of the environment.
This is usually a simple matter of mapping Soar output events to appropriate input
events.

Figure 6 The architecture of our prototype translator.

Although referred to as a notional “translator”, our prototype is actually a collection
of tools as shown in Figure 6 above. The Soar Parser is a general purpose
parser/simplifier we have written and covers the entire language of Soar
productions (see Appendix A for the Soar grammar). The Datamap Generator is a
third-party tool (VisualSoar [8]) used to automate the generation of Soar datamaps
needed for the static expansion of Soar productions. The CSP Generator is the
heart of the translator, enforcing our Soar language constraints but carries out only
part of the translation – the actual work of expanding Soar productions is performed
within CSP using set comprehension.

The following sections describe the internal representation used to represent Soar
productions and datamaps, and then the actual process of generation.

5.2 The Internal Representation

The representation we use for Soar productions is essentially the simple “internal
form” as used by the Soar kernel. In this form a Soar production consists of a set of
conditions and actions, each a basic 4-tuple of (preference,identifier,attribute,value)
created by expanding attribute paths, synthesising implicit variables and so on. In
fact, the “internal form” of any production may be viewed in an interactive Soar
session by using the print command.

We make heavy use of the concept of a Soar “test”. This is the basic datatype used
by the Soar language for the specification of identifiers, attributes and values. The
syntax for Soar tests lacks punctuation and is hard to read. However, we do have

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 24
QinetiQ Proprietary

UNCLASSIFIED

an authoritative LALR(1)5 grammar for the Soar language, part of the on-line
documentation of the Soar kernel [9] and listed in Appendix A. Inspection of the
Soar kernel source code confirms that its does in fact adhere to the grammar and
so we have used it as the basis for our prototype Soar parser/simplifier.

For reference, a Soar “test” may be one of:

• A Soar constant (integer, float, symbolic), e.g. 23, 1.134 or house
• A Soar variable, e.g. <block>, <s>
• A relational predicate, e.g. <> table, > 0, < <var>
• A disjunction of constants, e.g. << a b c >>, << 1 2 3 >>
• A conjunction of the above, e.g. { <name> << a b c >> }

To illustrate the use of Soar tests and the expansion of productions to the internal
representation we will use a production from our Soar Blocks World agent:

sp {apply*move-block*to-table
(state <s> ^operator <op>

^block <moving> {<> <moving> <origin>})
(<op> ^name move-block

^block <m>
^destination table)

(<moving> ^name <m> ^on <o> ^below o)
(<origin> ^name <o> ^below <m>)

-->
(<moving> ^on table ^on <o> -)
(<origin> ^below o ^below <m> -)}

This is an operator application (“O-support”) production rule used to apply the
move-block operator in the case when moving blocks to the table. The production
name apply*move-block*to-table is followed by a set of conditions, an arrow,
and then a set of actions. Conditions and actions are delimited by parentheses and
contain an identifier variable followed by a list of attribute-value pairs. Attributes are
always indicated using a hat symbol ^ as they may take multiple values. Finally, the
top ‘state’ node, here <s>, must always be identified in the conditions by the marker
“state”.

In the production above the conditions test for an operator <op> that moves some
block named <m> to the table. They also test for two distinct blocks <moving> and
<origin> (note the conjunctive test for <origin>), and a situation in which
<moving> has the same name as the moving block, is clear (denoted by “o”) and is
sitting on the block <origin>. Given these firing conditions, the production effects
the block movement in the actions by updating the state of each block.

Once parsed and simplified, the production produces a set of 4-tuple conditions and
actions that may then be wired together to form a production graph. This is the
actual internal representation we use in our CSP generator and allows us to make
additional semantic checks and determine violations of our Soar language
constraints. The production graph is wired up in a parenting process as follows.

5 LALR(1) is a type of grammar that may be parsed Left to Right only using one Look Ahead
token.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 25
QinetiQ Proprietary

UNCLASSIFIED

First, the parents of a node are all those nodes that contain the node’s identifier as a
value test; the only constraint being that action nodes may not parent condition
nodes. We may then link all parents to their children to form the complete graph as
in Figure 7. Each node is labelled with its attribute and value tests separated by a
colon ‘:’, conditions are given a light shade and actions a dark shade (preferences
are also indicated using colour).

Figure 7 The production graph for apply*move-block*from-table*to-
block.

Our prototype Soar Parser is written in Perl using a parser compiler known as
yapp6. This allows us to separate out the grammar from the business of constructing
conditions and actions. The semantic actions that construct these simplified
conditions and actions are based on the Soar kernel parser source code but are
much simplified for our purposes.

While constructing and debugging the Soar Parser we made extensive use of a
graph visualisation tool known as Graphviz [11]. We intend to include this tool as
part of the prototype translator, and use it to output production graphs such as
Figure 7 that violate the Soar language constraints of section 4 (e.g. cycles, many-
to-one links) so that the analyst may quickly determine the cause.

5.3 Generation

The process of generation is analogous to the work of a compiler; there is a target
environment – our CSP model of Soar, to which we must map our source language
of Soar productions. The CSP generator also takes on the activities of a compiler.

6 Yapp – Yet Another Perl Parser compiler, a yacc-like clone for perl [10].

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 26
QinetiQ Proprietary

UNCLASSIFIED

Beyond merely parsing the source language, we will perform a semantic analysis,
code generation and perhaps optimisation. Semantic analysis will be used to check
certain assumptions of the modelling, for instance containment of productions within
the datamap. Code generation will produce the actual CSP, mapping Soar symbols
to legal CSP symbols, constructing CSP datatypes/channels and producing the
CSP firing rules. Again, the CSP Generator is written in Perl.

5.3.1 Target Environment

The target environment, our CSP model of Soar, has to some extent been
described by section 3. However, in generating the data for our generic CSP model
we may also make extensive use of the CSP functional language CSPm. This
enables us to make a trade-off between processing within our translator and
processing within the CSP, i.e. the model checker FDR. Currently, though, besides
the static expansion of productions through set comprehensions, we make little use
of CSP in our generation. The major features of our current target environment are
as follows:

• WMEs are named by an attribute path + value.
• All operators must be pre-declared by “name” and parameters, e.g.

Moveblock.{a,b,c}.{a,b,c,table}.
• Datamap values are made accessible through the function “vals”.
• Datamap multi-attribute values are made accessible through the

function “multi”.
• CSP firing rules are specified using a 3-tuple of

(name,{conditions},{actions}).
• WME conditions and actions are specified using the channel “wme”.
• Negative actions are distinguished using the channel “Disable”.
• Operator proposals and applications are specified using the channels

“propose” and “operator” respectively.

To illustrate the above, the following is an example of a set comprehension from our
“proof-of-concept” CSP translation of the Blocks World Soar agent (see Appendix
B).

propose_moveblock_2 = {
(propose_moveblock_totable,
 {

wme.B1.name.A1,
wme.B1.on.O1,
wme.B1.below.o

},
{

propose.Moveblock.A1.table
}

) | B1 <- multi2(st.block),
A1 <- vals(B1.name), O1 <- vals(B1.on),
O1 != table

}
Here, the expression expands to a set of CSP firing rules that together represent
the Soar production propose*move-block*to-table. A vertical bar ‘|’ in the set
comprehension separates the template CSP firing rule from a list of variable

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 27
QinetiQ Proprietary

UNCLASSIFIED

bindings used in the expansion. A CSP firing rule is then produced for all possible
variable bindings.

Expansion is over the possible values for a multi-attribute “block” and the possible
values for leaf nodes in the production graph, i.e. “name” and “on”. Note that the
relational test “<> table“ contained in the production graph is passed into the
CSP set comprehension as the constraint “O1 != table”, and that the operator
proposal actions are reduced to a single CSP “propose” event.

5.3.2 Semantic Analysis

The semantic analysis phase of our prototype translator has not been designed yet
but is expected to involve the analysis of production graphs against the datamap
graphs supplied by the analyst. In particular, we intend to enforce some of the
fundamental constraints concerning potential conflicts over “I-support” and “O-
support” as well as the issue of “unbound” Soar variables, something that may be
hard and undesirable to do within the CSP model of Soar (we want to protect the
analyst).

Given that the static expansion is performed within the CSP as above, an obvious
check to perform will be to check for containment of production graphs within the
datamaps. This may be a simple matter of checking that each production graph
matches a datamap (which may already be done using the VisualSoar tool [8]), or
may even include reasoning over production graphs to check for undeclared “multi-
attributes”. Related to the latter check is the question of the “completeness” of the
datamaps, i.e. whether our static expansion of Soar productions covers every
possible production “instance”. This is an open question – for the time being we
make the assumption that our datamaps are complete after analyst input.

Finally, we are likely to want to perform some kind of data refinement. For instance,
we cannot currently handle inequalities and a semantic analysis could be used to
determine range abstractions such as “x_lt_9”, perhaps with analyst assistance.

5.3.3 Code Generation

Code generation within the prototype translator is currently rather bespoke and not
quite complete. However, the translator is capable of producing the set
comprehensions for CSP firing rules as in section 5.3.1 above, and of mapping
Soar’s symbols to legal CSP symbols. Still to complete are the construction of the
CSP datatypes/channels from an analysis of the datamaps and the actual
realisation of a complete CSP script.

The generation of the CSP set comprehensions is currently performed in a single
pass through the production graph as follows. The algorithm will be subject to
change once the current limitations of section 4.2 are resolved and is provided for
illustration only. It assumes all nodes in the production graph have been previously
decorated with semantic information such as “multi-attribute” status.

The algorithm consists of a depth-first traversal of the production graph, updating a
symbol table and set of outputs (conditions, actions, proposals, applications,
constraints). As such it is quite complicated and should really be separated into
multiple passes. The key behaviour is as follows:

• Soar variables are declared whenever they appear as equality tests.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 28
QinetiQ Proprietary

UNCLASSIFIED

• Each Soar variable declaration binds a CSP variable using the ‘vals’
function, repeated declarations necessitate an implicit equality constraint.

• For Soar variables denoting identifiers, the ‘vals’ function uses the special
value na.

• Soar tests are converted to CSP constraints over the Soar variable
declared in the test.

Once a traversal of the production graph is complete we realise the collected
outputs as a CSP set comprehension. In particular, the CSP constraints must be
reordered to meet “declaration before use” dependencies using a topological sort.
Any operator proposals or operator applications must be output as the special
propose and operator events. We use the special value na to specify any fields
that were not defined in the production.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 29
QinetiQ Proprietary

UNCLASSIFIED

6 Over-determined Intelligence
6.1 What is over-determined intelligence?

In this report we are taking over-determined intelligence to mean that the collection
of Soar rules have given rise to a system that is more specialised than it needs to
be. For example in the “blocks world” case study, if the blocks were different colours
then we might have a Soar program that could only arrange white blocks but was
unable to deal with red blocks. Clearly the objective would be to have a Soar
program that could arrange blocks irrespective of their colour and only being able to
arrange white blocks is a characteristic of an “intelligence” that is over-determined.

The problem is that we can recognise the above example of over determination, but
other examples might be more complex or subtle. Indeed some examples of over
determination might be subjective depending upon the context in which the machine
intelligence operated. Instead an objective characterisation of over-determined
intelligence is required that can be determined mechanistically. The characterisation
that we choose is of rule redundancy. This will not capture all types of over
determination, but it will catch over specialisation due to too many rules being
added. This characterisation of over determination is similar to the concept of
completeness in Inductive Logic Programming when a set of rules should cover all
positive examples from a learning set.

A working definition of a redundant rule is:

Definition 1 A rule is said to be redundant if it cannot, does not, or need not fire,
and the observable behaviour of the program is the same if the rule is removed.

In this section, we explore this definition, identifying several types of redundancy,
and showing how their presence can be detected.

6.2 Classes of redundant rules

Before discussing redundant rules further a few definitions are needed.

Definition 2 Conjunctive normal form for rule sets
A rule set is in conjunctive normal form if it is a conjunction (sequence of ‘and’s)
consisting of one or more rules, each of which is a disjunction (‘or’s) of one or more
hypotheses leading to the same conclusion.

We will also adopt the syntax for a rule in definition 3. This definition expresses a
rule as an implication: if the hypothesis h is true, then the conclusion c can be
inferred. In this definition, h may be a conjunction of several facts, but c is a single
fact. This syntax shows that rules, and sets of rules, can be described in terms of
logical propositions.

Definition 3 Syntax of a rule: h=>c

6.2.1 Non-firing rules

The first major class of redundancy is rules that do not fire. A rule may not fire for
one of several reasons:
• the hypothesis of the rule is encapsulated by another rule;

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 30
QinetiQ Proprietary

UNCLASSIFIED

• the hypothesis is trivially false;

• the system cannot evolve into a state in which the hypothesis can be
asserted.

If ‘A’ is a hypothesis for the rule “A => C” and ‘B’ is the hypothesis for the rule “B =>
C”, such that ‘A’ is a stronger hypothesis than ‘B’ (i.e. “A and B” is logically
equivalent to ‘A’), then the rule “B => C” is absorbed by the rule “A=> C”.

The second case of a non-firing rule is one where the hypothesis of the rule is
trivially false. Such a situation can arise, for instance, when the hypothesis of a rule
is two conflicting facts such as “block A is on top of block B” and “block B is on top
of block A”.

An important result with regards to these two areas of redundancy is that they can
be removed automatically using a simple decision procedure.

The third possibility for a non-firing rule is that the rule is unreachable. This
situation can arise if, for instance, the system never evolves into a state where the
hypothesis is known to be true, even though the hypothesis itself is not trivially
false. An unreachable hypothesis is a consequence of the behaviour of the system,
rather than a property of the rule itself, a property that is not readily detectable using
conjunctive normal form. Instead, FDR can be used to assert that a state exists in
the system where the rule can fire.

6.2.2 Unnecessary rules

The second major class of rules that can be shown to be redundant are
unnecessary rules. A rule is unnecessary if it establishes an irrelevant fact, one that
neither appears in the hypothesis of another rule, nor is observable in the external
world.

Example Two unnecessry rules

 r5 = h => c
 r6 = c => h

In the example above we have a pair of potentially unnecessary rules. The first
rule, concludes c when h is true; while the second concludes h when c is true. If
no other rule in the set requires c in a hypothesis, and c is not externally visible,
then these two rules do not conclude any useful information about the state of the
system, and can be removed.

6.2.3 Abstract modes

The final area of redundancy discussed in this paper concerns abstract modes
within a set of rules. Unlike the other areas of redundancy discussed in this paper,
this is not readily detectable using tools, but relies on well chosen modelling
decisions. However, when abstract modes are built into the rule set, the
correctness of the abstractions employed can be verified using FDR. By identifying
suitable abstract modes, it is often possible to introduce several new rules to
replace a large set of existing rules.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 31
QinetiQ Proprietary

UNCLASSIFIED

Definition 4 Abstract modes

An abstract mode exists in a rule set when one conclusion can be inferred from a
set of disjoint hypotheses that are continuous over a range of senses, and no other
rules depend on those hypotheses.

The following example contains a simple definition of a fuel tank in an aircraft. The
fuel tank emits sensor measurements indicating its fuel level, upon which two
control systems rely. One is a flight control system, relying on detailed fuel
information; the other is a fuel control system, concerned with making sure that fuel
can only be drawn from, or put in, to the tank when appropriate. These
relationships can be expressed in CSP as:

channel level : 0..20

Fuel_Control [| {|level|} |] Fuel_Tank [| {|level|} |]
Flight_Control

Senses emitted by the tank indicate the level in the tank, an integer between 0 and
20 (where 0 corresponds to an empty tank and 20 a full tank). It is the responsibility
of the fuel control system to ensure that fuel cannot be drawn from an empty tank,
and cannot be filled into a full tank. This requirement is described by the rules
below. The full enumeration of this rule set amounts to 40 rules.

level.0 => fill
level.1 => fill
level.1 => draw
...
level.19 => fill
level.19 => draw
level.20 => draw

The structure of these rules can be abstracted: the conclusion is the same across
the range 1-19-which can be described by the abstract mode, normal. A new rule
set is given below.

Sensor information is used to establish the mode of operation, and actuations are
defined in these terms. When a sensor signal is received indicating the system is
no longer in a given mode, the mode is forgotten. The abstract rule set consists of
12 rules.

level.0 => not normal
level.0 and not normal and level.1 => not level.1
level.1 and not normal => normal
level.1 and normal and level.0 => not level.0
level.19 and not normal => normal
level.19 and normal and level.20 => not level.19
level.20 => not normal
level.20 and not normal and level.19 => not level.19
normal and not level.0 and not level.20 => fill
normal and not level.0 and not level.20 => draw
level.0 and not normal => fill
level.20 and not normal => draw

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 32
QinetiQ Proprietary

UNCLASSIFIED

6.3 A simple example

In this sub-section, we present a simple example of a control system, and an
associated rule set. We then apply the techniques discussed in section 6.1 to
expose, and remove, areas of redundancy. The example is a simple kettle which
can be used to boil water, to pour water, or, occasionally needs refilled.
Unconstrained use of the kettle leads to a hazardous situation. To solve this
problem, a control system, in the disguise of a maid, is deployed.

The water level in the kettle can range between the values 0 and 4, where 0 is the
minimum and 4 is the maximum; the minimum safe level is 1, and maximum safe
level is 3 before burnout or spillage become a threat. The kettle indicates that it is
ready for operation, and confirms an initial (safe) water level of 2.

6.3.1 The kettle

max = 4
min = 0

safe_min = 1
safe_max = 3

start_level = 2

inc(x)= if(x==max) then x else x+1
dec(x)= if(x==min) then x else x-1

Kettle =
kettle_ready -> indicator.start_level -> Kettle'(start_level)

The CSP above defines a kettle in terms of the behaviour relevant to some
observer. It starts with some event that indicates that the kettle is ready, perhaps
some initialisation event. In this simple example the kettle magically always starts
with water at a certain level, indicated by the constant start_level which, in this
case, is defined to be 2. The kettle then enters into normal operating mode that is
defined by the process Kettle’ defined below.

In normal operating mode a user of the kettle may choose to pour water from the
kettle. After doing so, the kettle emits a sensor signal to confirm the water level has
reduced, and then recurses. Alternatively, a user may choose to boil water. This
act results in some steam being produced-which also causes a drop in the water
level. The third option is to fill the kettle with some more water, resulting in the
water level increasing. The remaining options describe the two hazards: should the
water rise above the safe level, then the kettle will overflow and water will spill out.
Alternatively, should it drop below the safe level, the kettle will burnout. After each
hazard, the kettle deadlocks.

Kettle'(level)=
pour -> indicator.dec(level) -> Kettle'(dec(level))
[]
boil_water -> indicator.dec(level) -> Kettle'(dec(level))
[]

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 33
QinetiQ Proprietary

UNCLASSIFIED

 fill -> indicator.inc(level) -> Kettle'(inc(level))
[]
level > safe_max & spill -> STOP
[]
level < safe_min & burnout -> STOP

The safety criterion is to ensure that the kettle never enters a hazardous state, i.e.
will never overflow or burnout.

assert STOP [T= Kettle \ (All_Events \ Disaster_Events)
Using FDR, an analysis provides a counter example, a trace that leads to the kettle
burning out. Unconstrained use of the kettle is therefore not safe. The solution is a
control system designed to allow a user to pour the kettle when it is in a safe state,
and fill and boil the kettle when it is appropriate to do so, such as below7.

Rule1 = indicator.2 => pour
Rule2 = indicator.2 => boil_water
Rule3 = indicator.2 => fill
Rule4 = indicator.3 => pour
Rule5 = indicator.3 => boil_water
Rule6 = indicator.1 => fill
Rule7 = indicator.3 and boil_water => pour
Rule8 = indicator.2 and indicator.3 => pour
Rule9 = indicator.2 and not indicator.2 => fill

The implementation of the control system is the parallel composition of processes
firing individual rules. The composition of the control system and the kettle is given
below. As the control system is responsible for filling and boiling the kettle, these
events are hidden from the external view of the system. The only external
observation is the act of pouring the kettle: the functionality required by a user of the
kettle.

Controlled_Kettle =
(Maid[|{|fill,boil,pour,indicator|}|]Kettle)\{|fill,boil,indicator|}

The process Controlled_Kettle is the parallel composition of the processes Maid
and Kettle such that they only progress individually if they are both ready to perform
the events “fill”, “boil”, “pour” and “indicator”. Any other event, such as Kettle_ready,
can occur independently. The events “fill”, “boil”, “pour” and “indicator” are hidden
(using the hide operator ‘\’) to prevent outside interference with the system
definition.

A safety analysis on the new system reveals that now the kettle is safe: the control
system enforces the condition that filling and boiling are done when appropriate.
Furthermore, a second refinement check evidences that a user can pour the kettle
when desired, and it does not contravene the safety condition in doing so.

7 Of course the above rules are contrived to illustrate the issues of redundancy and would in
practice never occur for such a small set of rules. For a distributed control system with
hundreds, or even thousands of rules this could occur. However it is likely that in practice
redundancy will arise from subtlties of rule expression for a particular problem. How these
might manifest themselves is beyond the scope of this report.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 34
QinetiQ Proprietary

UNCLASSIFIED

Although safe, the implementation of the control system should also be optimal: it
should not contain redundant rules. Using a decision procedure, rule9 is shown to
have a false hypothesis and can be removed. Furthermore, FDR confirms rule8 has
an unreachable hypothesis and can also be safely removed. In fact FDR would also
show that rule9 would be unreachable because of the inconsistent hypothesis.

Rule 4 presents an interesting quandary. Reducing to the normal form suggests this
is absorbed by rule 7, and should be removed. However, while doing so still
observes the safety criteria, it contravenes the standard property of liveness.
Liveness is the property that a system does not idle forever performing no useful
function. It should be concluded, therefore, that this rule can be removed if only the
safety properties are of interest, but not if the liveness property must also be
observed. This example shows that when a rule is removed through conjunctive
normal form and absorption, checks should be made to ensure that any liveness
properties of interest are still preserved. This suggests that using the reachability
analysis provided by FDR is necessary and sufficient to guarantee safety and
liveness in a rule based system.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 35
QinetiQ Proprietary

UNCLASSIFIED

7 Analysis & Examples
This section covers an initial evaluation of our CSP model of Soar using the Blocks
World Soar agent described in section 2.2. We also report on the progress towards
the analysis of a real Soar agent, the RoadSearch case study.

7.1 Blocks World

Before writing the prototype translator described in section 5 we wrote a manual
“proof-of-concept” translation of our Blocks-World agent to our CSP model target
environment. This enabled us to develop the CSP model, design the target
environment as well as the translation process. As our prototype translator is not
capable of producing complete CSP scripts, we have used the manual translation in
the following evaluation. Those familiar with CSP may consult Appendix B for the
source before continuing.

The manual translation contains nine out of the sixteen Soar productions defining
our Blocks World agent. There are three operator proposal rules and four operator
application rules, and only two belief maintenance rules. Out of the seven rules
excluded from the translation, one is an operator selection rule and four are
standard state elaboration rules that are not used by our simple agent. The
remaining two rules are monitor rules whose actions are just function calls (and
would be ignored by our translator anyway).

In our translation, each Soar production expands to about six CSP firing rules on
average with forty-seven rules in total. There are twenty-two belief maintenance
rules, generated automatically by the target environment using a set
comprehension. There are 89 facts in total, composed of 47 WMEs, 10 operator
applications, 10 operator proposals, and 22 disable triggers (one for each WME that
may be forgotten). Note that there are over twice the number of WMEs to disable
triggers. This is because our Soar agent contains an explicit representation of the
Blocks World goal that may be initialised (using “O-support”) to a large number of
configurations but never forgotten.

For our evaluation we initially tried to model check the CSP script for the properties
of section 3.1. This uncovered several issues with the CSP model including the
need to prevent CSP firing rules from firing unless they are making “progress”, i.e.
creating or removing WMEs. For the rules that can fire without making progress we
now add an “oracle” process that prevents the rule from firing unless there is (or has
been) progress to be made.

We found that our low-level treatment of belief maintenance introduced an
explosion in the state space of the model. As belief maintenance is performed on
the level of WMEs our model introduces a huge number of intermediate states that
could not exist within a Soar system. In fact, the situation is so bad that our model
checker FDR reaches 37 million states without finishing.

We have remedied this situation by giving belief maintenance precedence over
normal rule firings and hiding the intermediate states. However, this is only a
temporary solution to allow us to evaluate other parts of the CSP model. We need
to pull the low-level model of belief maintenance up to at least the level of atomic
rule firings. To do this we will make good use of the fundamental constraints of
section 4.1 concerning “I-support” and “O-support”. The state-space of the Blocks

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 36
QinetiQ Proprietary

UNCLASSIFIED

World CSP model with this temporary solution has between 4,000 and 20,000
states and is easily model checked.

Our initial model checking for the healthiness properties of section 3.1 has been
successful. We are currently able to check for all enabling-disabling loops, but only
certain types of impasse (our decide module is not complete yet). To check for
these properties we must always perform two separate checks, first one for the
enabling-disabling loops and then one for impasses. In the first check we hide all
rule-firing events and check for livelock. In the second check we simply check for
deadlock.

Without any faults injected, the model checker did not detect any bad behaviour as
expected from running Soar. We then proceeded to inject faults into the Soar
productions, comparing the results of the model checker to that of running Soar. We
found it hard to inject enabling-disabling loops but were able to detect the behaviour
by adding conflicting rules. We confirmed the inadequacy of our decide module, but
did find an interesting impasse as follows.

When we injected a fault into the apply*move-block*to-table, the model
checker revealed a sequence of decisions (block movements) that led to an
impasse. For the fault, we removed an action asserting the fact that when you move
a block to the table the block below it becomes clear. As a block must be clear to be
moved it is simple to see that the Soar agent could get into a state in which it thinks
no blocks are clear, hence an impasse. The model checker found the following
(simplified) sequence:

infer.(propose_initialise,{…},{…})
decide.Initialise
infer.(apply_initialise,{…},{…})
tock
infer.(propose_moveblock_toblock,{…},{…})
decide.Moveblock.b.a
infer.(apply_moveblock_fromtable_toblock,{…},{…})
tock
infer.(propose_moveblock_toblock,{…},{…})
decide.Moveblock.c.b
infer.(apply_moveblock_fromtable_toblock,{…},{…})
tock
infer.(propose_moveblock_totable,{…},{…})
decide.Moveblock.c.table
infer.(apply_moveblock_totable,{…},{…})
tock

Running Soar with the faulty production rule revealed the same impasse, but we
had to run the Soar agent for longer. Although this is a trivial example, it does
illustrate the usefulness of our analysis.

7.2 RoadSearch Case Study

In a first effort to analyse an software agent operating within a UAV context, we
have revisited the implementation of a Soar agent that provides a plan for searching
a network of roads for a moving road vehicle using multiple UAVs [2]. This agent
was developed for use in piloted simulation trials examining the management of
multiple UAVs from a single airborne operator.

The RoadSearch problem is complex and open-ended problem, and the Soar agent
solution adopted a relatively simple approach, appropriate to the reqiuirements of

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 37
QinetiQ Proprietary

UNCLASSIFIED

piloted simulation. In spite of this, its properties are representative of those
anticipated in a fully-developed search and planning agent.

The algorithm uses map data, which describes sections of road as a series of
latitude and longitude coordinates. From this, Soar rules establish which road
sections are connected to which. Given the position that the moving target was last
sighted and the direction in which it was headed the Soar planning rules perform the
following actions:

• Establish the road section that the vehicle was on at the time it was
sighted, and its direction of travel, given the initial position and heading.

• Establish the network of road sections connected to the initial position in
the direction of travel, and in the opposite direction.

• Issue a request for each available UAV to search a specified road
section

• Issue the sequence of latitude/longitude coordinates to be used by each
UAV route following algorithm

• Replan when the initial position, direction or search distance data
changes.

Underlying the algorithm are the following assumptions:
• The vehicle is located on a road section at all times
• The vehicle is in the part of the road network specified by the original

direction of travel, i.e. it has not doubled-back
• There is no implicit completion criterion, the UAVs must be switched to

another task once the vehicle is located
• There are sufficient UAVs to cover the number of branches in the

network

Unfortunately, the current limitations of our CSP model and prototype translator
have prevented us from performing any detailed analysis of the RoadSearch Soar
agent. However, we can report some statistics on the impact of our Soar language
constraints (including current limitations) on the agent. These are as follows.

Out of 262 Soar productions, our Soar general-purpose parser managed to correctly
parse and simplify all but one of the productions. The one production that did not
parse contained an operator preference @ (reconsider) that is deprecated in the
Soar language and we do not support. The remaining 261 productions failed on a
number of constraints that we currently check. This is unsurprising since the
algorithm was developed without analysis or certification in mind. However it is
believed that the functionality of the algorithm can be expressed within the subset of
Soar defined by the translator. The RoadSearch algorithm is being restructured by
its developers, for separate reasons, and they are currently taking our constraints
into account. The new Soar program should be able to perform more efficiently and
also be analysable.

We also managed to auto-generate some documentation for the RoadSearch case
study using the tool SoarDoc [7]. This enabled us to understand the structure of the
Soar agent, namely its problem spaces and operators. We have started to produce
datamaps for the various problem spaces but these are still incomplete and require
analyst input to complete them. Figure 8 shows an initial auto-generated datamap
for the deployment problem space. The datamap shows structure that could

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 38
QinetiQ Proprietary

UNCLASSIFIED

potentially be exploited to formulate smaller checks that could then be composed
into a check for the overall Soar program.

Figure 8 An auto-generated datamap of the deployment problem space.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 39
QinetiQ Proprietary

UNCLASSIFIED

8 Conclusions
8.1 Summary

In this report enhancements to the CSP inference model have been made along
with a set of healthiness properties for Soar programs that can be mechanically
checked. However the ability to analyse Soar causes certain restrictions to apply to
the type of Soar program that can be written. This report lists the restrictions along
with the rationale for the restrictions.

The design of a prototype translator is also presented that essentially provides the
semantics for the subset of the Soar language identified previously. The healthiness
property of non-redundancy of rules is adopted as an objective characteristic of
over-determined intelligence. The reason for this is that redundant rules indicate
that the Soar program has become over specialised. A precise definition of rule
redundancy has been given followed by the implications for detection and
elimination.

The case study of the “Blocks World” has been translated into the present CSP
inference model and analysed for the healthiness properties previously discussed.
The RoadSearch algorithm for autonomous vehicles was also assessed,
unfortunately it failed to meet the constraints necessary for analysis. Fortunately the
algorithm is to be changed, for separate reasons, from the present monolithic
program into many smaller interacting algorithms that should satisfy the analysis
constraints.

8.2 Conclusions

The provision of a translator and the formulation of healthiness checks that can be
automatically performed provide a novel and powerful analysis capability for Soar
programs that express Machine Intelligence. The mapping embodied by the
translator enables assurance arguments to be made about the translator and the
semantics of the Soar subset to be validated. The healthiness checks that can be
carried out mechanically will enable the analysis of Soar programs for typical
problems that frequently affect their operation. Furthermore, the Soar program can
also be assessed against critical properties that have been identified as part of a
system safety case. Finally the formal representation of Soar programs written in
the subset can be verifiably implemented on an FPGA via its semantic
representation in CSP; the potential route for achieving this is discussed in [1].

Based on this work the demonstrations of autonomy with pre-learned intelligence
can, in principle, be assessed. The most significant problem is the size of the state
space that potentially must be explored. However the use of multiple agents should
significantly mitigate this problem as well as speed up the Soar application, such as
the road searching Soar application developed by Blue Bear Ltd. The translator
also attempts to mitigate the size of the state space by identifying structure within
the problem space that the Soar program operates. It is conjectured that the
assessment of such a Soar program can be similarly structured into smaller checks
that can be composed together to give an equivalent check of the whole system.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 40
QinetiQ Proprietary

UNCLASSIFIED

9 Recommendations
Based on the results reported in this report it is recommended that:

• the formal model of Soar in CSP is extended to:

• extend it to enable full analysis of “Blocks World”;

• extend it to fix the current limitations of section 3.2.2 and 4.2;

• consider issues such as the completeness of datamaps;

• extend the prototype translator to:

• complete the semantic analysis to check constraints and modelling
assumptions;

• complete the code generation phase;

• perform an analysis of part of RoadSearch to:

• determine whether we can construct a complete datamap;

• investigate the input/output interface;

• determine the ease of eliminating false-negatives;

• validate the Soar language constraints as practical;

• investigate checking for over-determined intelligence by:

• validating on a simple agent for the “Blocks World” problem;

• validating against the “RoadSearch” problem.

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 41
QinetiQ Proprietary

UNCLASSIFIED

10 References
[1] C M O’Halloran. Feasible methods to quantify autonomy outcomes,

QinetiQ/FST/CR034761.
[2] P R Smith Marvin – Smart Algorithms For Combat UAVs

DERA/SA/EA1668/01-02/1.0, January 2002
[3] Jill Fain Lehman, John Laird, Paul Rosenbloom. A Gentle Introduction to Soar:

an Architecture for Human Cognition. In D. Scarborough & S. Sternberg
(Eds.), An invitation to Cognitive Science, Volume 4 Methods, models,
and conceptual issues. New York: MIT Press, 1998

[4] John Laird, Clare Bates Congdon and Karen J. Coulter. The Soar User’s
Manual (version 8.2), University of Michigan, 1999.

[5] Richard L. Lewis. Does the Mind Need a Bottleneck? Toward a functional
analysis of bottlenecks, executive processes, and control structures.
NASA Ames Research Center, Cognitive Group, November 2001.

[6] TankSoar,
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/samples/
TankSoar/

[7] SoarDoc,
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/soardoc.h
tml.

[8] VisualSoar, http://www.eecs.umich.edu/~soar/sitemaker/projects/visualsoar/.
[9] Soar Kernel Documentation

http://www.eecs.umich.edu/~soar/sitemaker/docs/doxygen/kernel/.
[10] Francois Desarmenien. Yapp: Yet Another Perl Parser compiler,

http://search.cpan.org/~fdesar/Parse-Yapp-1.05/.
[11] AT&T Research Labs. Graphviz - Open source graph drawing software.

http://www.research.att.com/sw/tools/graphviz/.

http://www.research.att.com/sw/tools/graphviz/.
http://search.cpan.org/~fdesar/Parse-Yapp-1.05/.
http://www.eecs.umich.edu/~soar/sitemaker/docs/doxygen/kernel/
http://www.eecs.umich.edu/~soar/sitemaker/projects/visualsoar/
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/soardoc.html
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/soardoc.html
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/samples/TankSoar/
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/samples/TankSoar/
http://www.research.att.com/sw/tools/graphviz/.
http://search.cpan.org/~fdesar/Parse-Yapp-1.05/.
http://www.eecs.umich.edu/~soar/sitemaker/docs/doxygen/kernel/
http://www.eecs.umich.edu/~soar/sitemaker/projects/visualsoar/
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/soardoc.html
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/soardoc.html
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/samples/TankSoar/
http://www.eecs.umich.edu/~soar/sitemaker/projects/soardoc/samples/TankSoar/

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 42
QinetiQ Proprietary

UNCLASSIFIED

A. Appendix A
The Soar Production Grammar

The main lexical tokens are as follows:

VARIABLE = <[A-Za-z][A-Za-z0-9$%&*+-/:<=>?_]*>
SYM_CONSTANT = [A-Za-z][A-Za-z0-9$%&*+-/:<=>?_]*
INT_CONSTANT = [+-]?[0-9]+
FLOAT_CONSTANT = [+-]?[0-9]+\.[0-9]*{[eE][+-]?[0-9]*}?

Compound literals include:

'-->', '<<', '>>', '<>', '<=', '>=', '<=>'

Whitespace is [\t\n\r\f]

Comments begin with '#' and extend to end of line

SYM_CONSTANTs may also appear between vertical bars '|'
as in |hello world|.

%token VARIABLE
%token SYM_CONSTANT
%token INT_CONSTANT
%token FLOAT_CONSTANT

%%

prods: prods production
| production

;

'sp' '{' production_name lhs '-->' rhs '}'
production: SYM_CONSTANT '{' SYM_CONSTANT lhs '-->' rhs '}'
;

LEFT HAND SIDE (LHS)

lhs: conds
;

<cond>+
conds: conds cond

| cond
;

cond: minus positive_cond
;

positive_cond: conds_for_one_id
| '{' conds '}'

;

conds_for_one_id: '(' id_test attr_value_tests ')'
;

[state|impasse] [<test>]
id_test: #empty

| test
| test test

;

test: conjunctive_test | simple_test
;

conjunctive_test: '{' simple_tests '}'
;

<simple_test>+
simple_tests: simple_tests simple_test

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 43
QinetiQ Proprietary

UNCLASSIFIED

| simple_test
;

simple_test: disjunctive_test | relational_test
;

disjunctive_test: '<<' constants '>>'
;

<constant>+
constants: constants constant

| constant
;

constant: SYM_CONSTANT | INT_CONSTANT | FLOAT_CONSTANT
;

relational_test: relation single_test
;

[<relation>]
relation: #empty

| '<>' | '<' | '>' | '<=' | '>=' | '=' | '<=>'
;

single_test: VARIABLE | constant
;

<attr_value_test>*
attr_value_tests: #empty

| attr_value_tests attr_value_test
;

attr_value_test: minus '^' attr_path value_tests
;

<attr_test> [. <attr_test>]*
attr_path: attr_path '.' test

| test
;

<value_test>*
value_tests: #empty

| value_tests value_test
;

value_test: test plus
| conds_for_one_id plus

;

RIGHT HAND SIDE (RHS)

rhs: rhs_actions
;

<rhs_action>*
rhs_actions: #empty

| rhs_actions rhs_action
;

rhs_action: '(' VARIABLE attr_value_makes ')'
| function_call

;

function_call: '(' function_name rhs_values ')'
;

<rhs_value>*
rhs_values: #empty

| rhs_values rhs_value
;

rhs_value: constant

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 44
QinetiQ Proprietary

UNCLASSIFIED

| function_call
| VARIABLE

;

<attr_value_make>+
attr_value_makes: attr_value_makes attr_value_make

| attr_value_make
;

attr_value_make: '^' rhs_attr_path value_makes
;

<rhs_value> [. <rhs_value>]*
rhs_attr_path: rhs_attr_path '.' rhs_value

| rhs_value
;

<value_make>+
value_makes: value_makes value_make

| value_make
;

value_make: rhs_value preferences
;

"comma" signals a default preference of '+'
preferences: comma

| preference_specifiers
;

comma: #empty
| ','

;

<preference_specifier>+
preference_specifiers: preference_specifiers preference_specifier

 | preference_specifier
;

NOTE:
There is a reduce/reduce conflict here between "unary" and
"binary" preference. The Soar User Manual specifies that "binary"
preference should take precedence!

preference_specifier: unary_preference comma
| binary_preference rhs_value

;

not supporting '@' (reconsider) preference.
unary_preference: '+' | '-' | '!' | '~' | '>' | '=' | '<'
;

not supporting '&' (??) preference.
binary_preference: '>' | '=' | '<'
;

[-]
minus: #empty

| '-'
;

[+]
plus: #empty

| '+'
;

%%

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 45
QinetiQ Proprietary

UNCLASSIFIED

B. Appendix B
-- CSP script produced using Soar2Csp version 0.0!

-- < header info such list of all Soar production rules, perhaps some
-- documentation from soardoc (if available) >

-- TYPES and CONSTANTS

-- The following attributes and values are reserved:
-- My CSP:
-- infer wme propose tock deductions ddeductions
-- bool fired i
-- CSPm:
-- true false not and or
-- if then else let within channel datatype nametype include assert print
-- length null head tail concat elem
-- union inter diff member card set
-- transparent chase normal extensions productions
-- ?? attribute embed module subtype ??

-- All user and reserved attributes (lowercase)
-- Notes:
-- "st" (state) is the 'null' attribute.
-- The use of '_' is limited to resolving multi-attributes.

datatype Attr =
 -- user attributes
st | below | block | block_1 | block_2 | block_3 |
goal | initialised | inplace | name | on |

 -- reserved attributes
superstate | topstate

-- All user values (*distinct* from attributes!)
-- Note: "na" (not applicable) is the 'null' value.

datatype Val =
na | a | b | c | table | o | yes | no

-- All operators - declared as bespoke imperatives with parameters
-- Notes:
-- We know exactly what proposals will be made and what operators
-- are expected from the Soar production rules & datamap!
-- For rules that simply "piggy-back" off an operator (e.g. by name),
-- we may use the 'null' value "na" instead of blindly expanding rules.

datatype Operator = Moveblock.{a,b,c}.{a,b,c,table} | Initialise

-- propose, decide and signal an Operator as above.

channel propose, decide, operator : Operator

-- a working memory element (WME) (attribute path + value)
-- Notes:
-- to keep type rectangular we represent shorter paths using 'null' attribute
-- "st":
-- <s> ^block.name a = wme.st.block.name.a
-- <s> ^superstate nil = wme.st.st.superstate.nil

channel wme : Attr.Attr.Attr.Val

-- special "disable" action representing the forgetting a WME

channel Disable : {|wme|}

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 46
QinetiQ Proprietary

UNCLASSIFIED

-- Some standard functions

pick({x}) = x

-- THE SOAR DATAMAP

-- The multi-attributes

-- whenever we know an attribute may be a multi-valued attribute
-- we use the 'multi' function to return the (suffix'd) attributes.

-- multi1 : Attr -> Attr
-- multi2 : Attr.Attr -> Attr.Attr

multi2(st.block) = {st.attr_ | attr_ <- {block_1,block_2,block_3}}
multi2(goal.block) = {goal.attr_ | attr_ <- {block_1,block_2,block_3}}

-- multi(st.st.mattr_) = {st.st.attr_ | attr_ <- multi1(mattr_)}
-- multi(st.mattr_) = {st.attr_ | attr_ <- multi2(mattr_)}

-- define attribute values
-- vals1 : Attr -> Set(Val)
-- vals : Attr.Attr -> Set(Val)
-- vals : Attr.Attr.Attr -> Set(Val)

-- some value types
OnVals = {a,b,c,table}
BelowVals = {a,b,c,o}

vals1(_) = {}

vals2(block_1.name) = {a}
vals2(block_1.on) = OnVals
vals2(block_1.below) = BelowVals
vals2(block_1.inplace) = {yes}
vals2(block_2.name) = {b}
vals2(block_2.on) = OnVals
vals2(block_2.below) = BelowVals
vals2(block_2.inplace) = {yes}
vals2(block_3.name) = {c}
vals2(block_3.on) = OnVals
vals2(block_3.below) = BelowVals
vals2(block_3.inplace) = {yes}

vals3(goal.block_1.name) = {a}
vals3(goal.block_1.on) = OnVals
vals3(goal.block_1.below) = BelowVals
vals3(goal.block_2.name) = {b}
vals3(goal.block_2.on) = OnVals
vals3(goal.block_2.below) = BelowVals
vals3(goal.block_3.name) = {c}
vals3(goal.block_3.on) = OnVals
vals3(goal.block_3.below) = BelowVals

vals(st.st.attr_) = vals1(attr_)
vals(st.attr_) = vals2(attr_)
vals(attr_) = vals3(attr_)

-- SOAR PRODUCTION RULES

-- The names of all Soar production rules

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 47
QinetiQ Proprietary

UNCLASSIFIED

-- Note: We use '_' for '*' and filter out non alphanumerics such as '-'.

datatype RuleName =
observe_block_inplace_1 | observe_block_inplace_2 |
propose_moveblock_toblock | propose_moveblock_totable |

selection_dontmove_inplace |
apply_moveblock_totable | apply_moveblock_fromtable_toblock |

apply_moveblock_fromblock_toblock |
propose_initialise | apply_initialise |
test_rule |
belief_maintenance

-- nametype Rule = (RuleName,{|wme,disable,operator|},{|wme,disable,propose|})

-- The actual rules
-- Note: We use the first two parts of the production name for the name of the CSPm
-- set, with an incremental suffix for duplicates, e.g. "observe_block_1".

-- sp {observe*block*in-place*1
-- (state <s> ^goal.block <gb>)
-- (<gb> ^name <n> ^on table)
-- (<s> ^block)
-- (^name <n> ^on table)
-- -->
-- (^in-place 1)}

-- expands to three rules.

observe_block_1 = {
(observe_block_inplace_1,

 {
wme.GB.name.N1,
wme.GB.on.table,
wme.B.name.N2,
wme.B.on.table

},
{

wme.B.inplace.yes
}

) | GB <- multi2(goal.block), B <- multi2(st.block),
N1 <- vals(GB.name), N2 <- vals(B.name),
N1 == N2

}

-- sp {observe*block*in-place*2
-- (state <s> ^goal.block <gb>)
-- (<gb> ^name <n> ^on <on>)
-- (<s> ^block <b1> <b2>)
-- (<b1> ^name <n> ^on <on>)
-- (<b2> ^name <on> ^in-place)
-- -->
-- (<b1> ^in-place 1)}

-- expands to nine rules, three of which represent (presumably!) impossible
-- goals - "a on a", "b on b", "c on c"
-- we could refine the datamap by removing these possibilities!

observe_block_2 = {
(observe_block_inplace_2,

{
wme.GB.name.N1,
wme.GB.on.O1,
wme.B1.name.N2,
wme.B1.on.O2,
wme.B2.name.O3,
wme.B2.inplace.I1

 },
{

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 48
QinetiQ Proprietary

UNCLASSIFIED

wme.B1.inplace.yes
}

) | GB <- multi2(goal.block), B1 <- multi2(st.block), B2 <- multi2(st.block),
N1 <- vals(GB.name), O1 <- vals(GB.on),
N2 <- vals(B1.name), O2 <- vals(B1.on),
O3 <- vals(B2.name), I1 <- vals(B2.inplace),
N1 == N2, O1 == O2, O1 == O3

}

-- sp {elaborate*state*name
-- (state <s> ^superstate.operator.name <name>)
-- -->
-- (<s> ^name <name>)
-- }

-- elaborate_1 = {
-- (elaborate_state_name,
-- {
-- superstate_???
-- },
-- {
-- ????
--
-- }
--) | ????
-- }

-- MOVE-BLOCK.SOAR

-- sp {propose*move-block*to-block
-- (state <s> ^block <block> {<> <block> <dest>})
-- (<block> ^name <a> ^below o)
-- (<dest> ^name ^below o)
-- -->
-- (<s> ^operator <o> + =)
-- (<o> ^name move-block
-- ^block <a>
-- ^destination)}

-- expands to six rules
-- N.B. we translate the operator preference to our bespoke form
-- N.B. preferences beyond '=' (indifferent) are ignored as yet!

propose_moveblock_1 = {
(propose_moveblock_toblock,

{
wme.B1.name.A1,
wme.B1.below.o,
wme.D1.name.B2,
wme.D1.below.o

},
{

propose.Moveblock.A1.B2
}

) | B1 <- multi2(st.block), D1 <- multi2(st.block), B1 != D1,
A1 <- vals(B1.name), B2 <- vals(D1.name)

}

--
-- sp {propose*move-block*to-table
-- (state <s> ^block <block>)
-- (<block> ^name <a> ^on <> table ^below o)

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 49
QinetiQ Proprietary

UNCLASSIFIED

-- -->
-- (<s> ^operator <o> + =)
-- (<o> ^name move-block
-- ^block <a>
-- ^destination table)}
--

-- expands to nine rules, three of which represent (presumably!) impossible
-- situations ("a on a", "b on b", "c on c")
-- N.B. we translate the operator preference to our bespoke form
-- N.B. preferences beyond '=' (indifferent) are ignored as yet!

propose_moveblock_2 = {
(propose_moveblock_totable,

{
wme.B1.name.A1,
wme.B1.on.O1,
wme.B1.below.o

},
{

propose.Moveblock.A1.table
}

) | B1 <- multi2(st.block),
A1 <- vals(B1.name), O1 <- vals(B1.on),
O1 != table

}

--
-- sp {selection*dont-move*in-place
-- (state <s> ^operator <o> +)
-- (<o> ^name move-block ^block <n>)
-- (<s> ^block)
-- (^name <n> ^in-place)
-- -->
-- (<s> ^operator <o> <)}
--

-- do we bother modelling operator preferences??
-- if we do then can we use belief maintenance as for normal I-support rules??
-- i.e. using "Disable.propose.??"

-- selection_1 = {
-- (selection_dontmove_inplace,
-- {
-- propose.Moveblock.N1.D1
-- B1.name.N2,
-- B1.inplace.I1
-- },
-- {
-- ?? operator pref ??
-- }
--) | B1 <- multi(block.na.na),
-- N1 <- {a,b,c}, D1 <- {a,b,c,table},
-- N2 <- vals(B1.name), I1 <- vals(B1.inplace),
-- N1 == N2
-- }

-- APPLY.SOAR

--
-- sp {apply*move-block*to-table
-- (state <s> ^operator <op>
-- ^block <moving> {<> <moving> <origin>})
-- (<op> ^name move-block
-- ^block <m>
-- ^destination table)
-- (<moving> ^name <m> ^on <o> ^below o)
-- (<origin> ^name <o> ^below <m>)

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 50
QinetiQ Proprietary

UNCLASSIFIED

-- -->
-- (<moving> ^on table ^on <o> -)
-- (<origin> ^below o ^below <m> -)}
--

-- expands to six rules, all of which *must* represent the possible scenarios
-- N.B. these rules should be expanded again if we require only *one* consequent!

-- note that we put the disables right in the "o-support" inference!
-- - we had better know about it if there is a clash between positive and
-- negative support for a WME!
-- - these are the "trigger" disables and are *not* forgotten by destructive
-- rules (but may be reset by positive "o-support"!)
-- - wmes that appear within the RHS of "o-support" rules are considered
-- to be "o-support" wmes
-- - "o-support" wmes (& Disable.wme) behave differently to normal wmes:
-- - "o-support" Disable.wme's are *not* forgotten by destructive
-- rules or "I-support" normal rules,
-- but must be reset by positive ("O-support") rules!
-- - hence, conflicts between "I-support" & (negative) "o-support" could come out as
-- livelock?? i.e. the "I-support" inference pulls up the wme, then the
-- Disable.wme pulls it down, then the "I-support" inference pulls it up
-- again...
-- - what about conflicts between "I-support" and positive "O-support"??
-- - need to add some more Soar semantics!!

apply_moveblock_1 = {

 -- (test_rule,
 -- {
 -- operator.Moveblock.a.table
 -- },
 -- {
 -- wme.st.block_1.on.c
 -- }
 --),
 -- (test_rule,
 -- {
 -- operator.Moveblock.a.table
 -- },
 -- {
 -- Disable.wme.st.block_1.on.c
 -- }
 --),

 -- (test_rule,
 -- {
 -- operator.Moveblock.a.table
 -- },
 -- {
 -- Disable.wme.st.st.initialised.no
 -- }
 --),

(apply_moveblock_totable,

 {
operator.Moveblock.M1.table,
wme.B1.name.M2,
wme.B1.below.o,
wme.B1.on.O1,
wme.B2.name.O2,
wme.B2.below.M3

},
{

 -- removal not caught, in soar results in only offering last operator
again!

 -- i.e. operator-no-change impasse
wme.B1.on.table,

 -- removal caught, results in deadlock & no proposals!
wme.B2.below.o,

 -- removal not caught, in soar as above

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 51
QinetiQ Proprietary

UNCLASSIFIED

Disable.wme.B1.on.O1,
 -- removal not caught, in soar no issue either!
Disable.wme.B2.below.M1

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B1 != B2,

M1 <- {a,b,c},
M2 <- vals(B1.name), O1 <- vals(B1.on),
O2 <- vals(B2.name), M3 <- vals(B2.below),
M1 == M2, M2 == M3, O1 == O2

}

--
-- sp {apply*move-block*from-table*to-block
-- (state <s> ^operator <op>
-- ^block <moving> {<> <moving> <dest>})
-- (<op> ^name move-block
-- ^block <m>
-- ^destination { <> table <d> })
-- (<moving> ^name <m> ^on table ^below o)
-- (<dest> ^name <d> ^below o)
-- -->
-- (<moving> ^on <d> ^on table -)
-- (<dest> ^below <m> ^below o -)}
--

-- again, expands to six rules, all of which *must* represent the possible scenarios
-- N.B. these rules should be expanded (*2) again if we require only *one*
consequent!

apply_moveblock_2 = {
(apply_moveblock_fromtable_toblock,

{
operator.Moveblock.M1.D1,
wme.B1.name.M2,
wme.B1.on.table,
wme.B1.below.o,
wme.B2.name.D2,
wme.B2.below.o

},
{

wme.B1.on.D1,
wme.B2.below.M1,
Disable.wme.B1.on.table,
Disable.wme.B2.below.o

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B1 != B2,
 M1 <- {a,b,c}, D1 <- {a,b,c,table}, D1 != table,

M2 <- vals(B1.name), D2 <- vals(B2.name),
M1 == M2, D1 == D2

}

-- sp {apply*move-block*from-block*to-block
-- (state <s> ^operator <op>
-- ^block <moving> {<> <moving> <origin>}
-- {<> <moving> <> <origin> <dest>})
-- (<op> ^name move-block
-- ^block <m>
-- ^destination { <> table <d> })
-- (<moving> ^name <m> ^on { <> table <o> } ^below o)
-- (<dest> ^name <d> ^below o)
-- (<origin> ^name <o> ^below <m>)
-- -->
-- (<moving> ^on <d> ^on <o> -)
-- (<dest> ^below <m> ^below o -)
-- (<origin> ^below o ^below <m> -)}

-- again, expands to six rules, all of which *must* represent the possible scenarios
-- N.B. these rules should be expanded (*3) again if we require only *one*
consequent!

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 52
QinetiQ Proprietary

UNCLASSIFIED

apply_moveblock_3 = {
(apply_moveblock_fromblock_toblock,

{
operator.Moveblock.M1.D1,
wme.B1.name.M2,
wme.B1.on.O1,
wme.B1.below.o,
wme.B2.name.D2,
wme.B2.below.o,

 wme.B3.name.O2,
wme.B3.below.M3

},
{

wme.B1.on.D1,
wme.B2.below.M1,
wme.B3.below.o,
Disable.wme.B1.on.O1,
Disable.wme.B2.below.o,
Disable.wme.B3.below.M1

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B3 <- multi2(st.block),

B1 != B2, B3 != B1, B3 != B2,
M1 <- {a,b,c}, D1 <- {a,b,c,table}, D1 != table,
M2 <- vals(B1.name), O1 <- vals(B1.on),
D2 <- vals(B2.name),
O2 <- vals(B3.name), M3 <- vals(B3.below),
D1 != table, O1 != table, M1 == M2, M2 == M3, D1 == D2, O1 == O2

}

-- MONITOR.SOAR
-- all have no real RHS action!

--
-- sp {monitor*goal*achieved
-- (state <s> ^goal <g>)
-- (<g> ^block <ga> <gb> <gc>)
-- (<ga> ^name a ^on <a1> ^below <a2>)
-- (<gb> ^name b ^on <b1> ^below <b2>)
-- (<gc> ^name c ^on <c1> ^below <c2>)
-- (<s> ^block <a> <c>)
-- (<a> ^name a ^on <a1> ^below <a2>)
-- (^name b ^on <b1> ^below <b2>)
-- (<c> ^name c ^on <c1> ^below <c2>)
-- -->
-- (write (crlf) |The problem has been solved.|)
-- (halt)}
--

-- INITIALISE.SOAR

-- sp {propose*initialise
-- (state <s> -^initialised)
-- -->
-- (<s> ^operator <o> + =)
-- (<o> ^name initialise)}

-- as we don't handle negated attribute conditions yet,
-- we convert (by hand!) "-^initialised" to "^initialised no" and make sure
-- wme.st.st.initialised.no is initially true!!

propose_initialise_1 = {
(propose_initialise,

{
wme.st.st.initialised.no

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 53
QinetiQ Proprietary

UNCLASSIFIED

},
{

propose.Initialise
}

)
}

-- sp {apply*initialise
-- (state <s> ^operator.name initialise)
-- -->
-- (<s> ^initialised yes)
-- # Initial State
-- (<s> ^block <a> <c>)
-- (<a> ^name a ^on table ^below o)
-- (^name b ^on table ^below o)
-- (<c> ^name c ^on table ^below o)
-- (write (crlf) |Initial state has A, B & C on the table.|)
-- # Goal State
-- (<s> ^goal <g>)
-- (<g> ^block <ga> <gb> <gc>)
-- (<ga> ^name a ^on b ^below o)
-- (<gb> ^name b ^on c ^below a)
-- (<gc> ^name c ^on table ^below b)
-- (write (crlf) |The goal is to get A on B on C on the table.|)}

-- as we don't handle negated attribute conditions yet (see propose*initialise)
-- we add (by hand!) "^initialised no -" to the RHS actions.

-- note the implicit "<a> != != <c>" when creating multi-attribute WMEs!
-- we need to resolve multi-attributes to unique solutions or we get non-det
-- rules!!

apply_initialise_1 = {
(apply_initialise,

{
operator.Initialise

},
{

wme.st.st.initialised.yes,
Disable.wme.st.st.initialised.no,
wme.B1.name.a,
wme.B1.on.c,
wme.B1.below.o,
wme.B2.name.b,
wme.B2.on.table,
wme.B2.below.o,
wme.B3.name.c,
wme.B3.on.table,
wme.B3.below.a,
wme.GA.name.a,
wme.GA.on.b,
wme.GA.below.o,
wme.GB.name.b,

 wme.GB.on.c,
wme.GB.below.a,
wme.GC.name.c,
wme.GC.on.table,
wme.GC.below.b

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B3 <- multi2(st.block),

B1 != B2, B3 != B1, B3 != B2,
member(a,vals(B1.name)), member(table,vals(B1.on)), member(o,vals(B1.below)),
member(b,vals(B2.name)), member(table,vals(B2.on)), member(o,vals(B2.below)),
member(c,vals(B3.name)), member(table,vals(B3.on)), member(o,vals(B3.below)),
GA <- multi2(goal.block), GB <- multi2(goal.block), GC <- multi2(goal.block),
GA != GB, GC != GB, GC != GA,
member(a,vals(GA.name)), member(b,vals(GA.on)), member(o,vals(GA.below)),
member(b,vals(GB.name)), member(c,vals(GB.on)), member(a,vals(GB.below)),
member(c,vals(GC.name)), member(table,vals(GC.on)), member(b,vals(GC.below))

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 54
QinetiQ Proprietary

UNCLASSIFIED

}

-- BELIEF MAINTENANCE RULES

-- Calculate "destructive" belief maintenance rules from (I-support) rule
dependencies.
--
-- Each rule implements the forgetting ("disabling") of an WME and its (potential)
-- immediate effects on dependent "I-support" rules (i.e. new "disable" actions).
-- The rules have semantics: (<dis>, <wme> --> <cons>)
-- <dis>, <wme> |- not* <dis>, not <wme>, <cons>
-- where <dis> is the "disable" action, <wme> is the WME, and <cons> is a
-- set of dependent "disable" actions (possibly empty).
-- * When <dis> is an "O-support" WME, the consequent is actually "<dis>" as we
-- expect forgetting of an "O-support" WME to be persistent (until an "O-support"
-- rule explicitly cancels the "disable").
--
-- Conflicts:
--
-- Although we currently assume a given WME will either have "O-support" (it is
-- added/removed by an "O-support" rule) or "I-support" (it is added by an
-- "I-support" rule), we may currently detect conflicts between "O-support" rules.
-- Here, two "O-support" rules compete to forget and recall an "O-support" WME
-- and we may end up with non-determinism (one rule disables the other) or
-- livelock as each undoes the actions of the other.
--
-- If an "I-support" rule gives (positive) support for an "O-support" WME then we
-- may detect similar conflicts as above (likely livelock), or worse, the ensuing
-- "disable" action may forget previous (positive) "O-support" - masking possible
-- behaviour! For this reason, we assume a given WME will either have "O-support"
-- *or* "I-support". This may be confirmed with a simple syntactic check!
--
-- If we want to model this issues of support, we must answer some questions:
-- 1. What happens when the positive "I-support" is lost?
-- - the "disable" action for an "O-support" WME is currently permanent
-- 2. What happens when there was previous positive "O-support"? how can we know?
-- do we care?
--
-- Algorithm:
--
-- Assuming any (I-support) rule may be retracted in its life-time, we construct
-- the set of all WMEs that may be forgotten from the consequents of these rules
-- and any explicit "disable" actions in a set of (O-support) trigger rules.
--
-- Each "starter" WME then contributes a (belief maintenance) rule as above with
-- all its (potentially) dependent (I-support) rule's consequents as "disable"
-- actions (excluding itself).
--
-- This is a pessimistic, simple model that could be refined and developed.

dependencies(triggers_,rules_) =
 let

starters_ = Union({ { t_ | (_,_,C_) <- triggers_, Disable.t_ <- C_ },
{ wme.i | (_,_,C_) <- rules_, wme.i <- C_ } })

within
{(belief_maintenance,

{
Disable.F_,
F_

},
{

Disable.wme.c_ | (_,A_,CC_) <- rules_, member(F_,A_), wme.c_ <- CC_,
(wme.c_) != F_

}
) | F_ <- starters_

}

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 55
QinetiQ Proprietary

UNCLASSIFIED

-- example: if one block is no longer in place then any block sitting on it
-- may no longer be in place! (see observe*block*in-place*2)

-- (Dis.???,
-- {Disable.wme.st.block_3.inplace.yes,
-- wme.st.block_3.inplace.yes},
-- {Disable.wme.st.block_2.inplace.yes,
-- Disable.wme.st.block_1.inplace.yes}
--)

-- SOAR MODEL

-- A Soar production rule is an "O-support" rule iff it tests for an operator in
-- the LHS, else it is an "I-support" rule.
-- A Soar working memory element (WME) is an "O-support" WME iff it appears in the
-- RHS of an "O-support" rule, else it is an "I-support" WME.
--
-- O-SUPPORT Rules:
--
-- "O-support" rules have semantics: (<operator>, <wmes> --> <cons>)
-- <operator>, <wmes>, not <cons> |- <cons>
-- where <wmes> is a set of any WMEs (possibly empty) and <cons> is a set of
-- WMEs and "disable" actions.
--
-- Note that we require 'not <cons>', i.e. one or more of the consequents are
-- false. This prevents the rule from continually firing unless progress is being
-- made, hence 'livelock' will not occur unless caused by rule interactions.
--
-- When the rule has only one consequent (positive or negative), then it is a
-- simple matter to prevent the rule from firing unnecessarily.
-- When the rule has multiple consequents, then we require coordination to get
-- the required behaviour. Dividing up the rule into multiple rules, each with one
-- consequent proved problematic as "O-support" rules have negative actions.
-- To get this behaviour we use instead an 'oracle' that insists that one of the
-- consequents of such a rule must be 'false' for the rule to re-fire. Note that
-- this only guarantees that the consequents *were* previously false.
-- For "blocks world" we only have to use oracles for "apply_2" rules as the other
-- "O-support" rules are incapable of firing while making no progress, under the
-- assumption that negative actions are given priority over positive actions. Here,
-- all the rules contain a negative action undermining a condition.
--
-- I-SUPPORT Rules:
--
-- "I-support" rules have semantics: (<wmes> --> <cons>)
-- <wmes>, not <cons> |- <cons>
-- where <wmes> and <cons> are sets of WMEs, where <cons> only contains
-- "I-support" WMEs.
--
-- Again, we require 'not <cons>', i.e. one or more of the consequents are
-- false, to prevent the rule from continually firing unless progress is
-- being made.
--
-- Again, the issue of 'not <cons>' and multiple consequents has to be resolved.
-- However, as "I-support" rules contain no negative actions we have decided to
-- split up "I-support" rules with multiple consequents by default. We may then
-- manually apply 'oracles' to such rules that cause (hopefully rare)
-- "false-negatives". Also, "I-support" rules are maintained by implicit
-- belief maintenace, the monitoring of the consequents will be harder.
-- For instance, one consequent could enable an "O-support" rule disabling the
-- rules before another consequent could enable an operator proposal, hence a
-- "false" impasse.

-- All the Soar production rules as above.
the_rules = Union({

observe_block_1,observe_block_2,

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 56
QinetiQ Proprietary

UNCLASSIFIED

propose_moveblock_1,propose_moveblock_2,
apply_moveblock_1,apply_moveblock_2,apply_moveblock_3,
propose_initialise_1,apply_initialise_1

})

-- "O-support" rules (see above for definition)
o_support = { (R_,A_,C_) | (R_,A_,C_) <- the_rules, inter(A_,{|operator|}) != {}}

-- "I-support" rules
i_support = diff(the_rules,o_support)

-- "O-support" WMEs (see above for definition)
o_support_wme = Union({ C_ | (_,_,C_) <- o_support})
o_supported(i) = member(wme.i,o_support_wme) or member(Disable.wme.i,o_support_wme)

deductions = the_rules
ddeductions = dependencies(o_support,i_support)

-- inferences

channel infer : union(deductions,ddeductions)

channel tock

-- count things...

-- Rules (69): 19 o_support, 28 i_support, 22 belief maintenance

-- 89!! (
all_facts = Union({ A_,C_ | (_,A_,C_) <- union(deductions,ddeductions)})

-- 22
all_disable = inter(all_facts,{|Disable|})

-- 10
all_proposals = inter(all_facts,{|propose|})

-- 10
all_operators = inter(all_facts,{|operator|})

-- 47!!
all_wmes = inter(all_facts,{|wme|})

-- WORKING MEMORY ELEMENT (WME)

alpha_WME(i) = {
infer.(R_,A_,C_) | (R_,A_,C_) <- union(deductions,ddeductions),

member(wme.i,C_) or member(wme.i,A_)
}

-- blocks all normal inferences with 'i' in antecedents
WME(i,false) =

let
Infer_from = {(R_,A_,C_) | (R_,A_,C_) <- deductions, member(wme.i,C_)}
Infer_from_d = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(wme.i,C_)}

within
 -- learn 'i'
([] r_ <- Infer_from @ infer.r_ -> WME(i,true))

[]
 -- learn 'i' - is this ever needed?
([] r_ <- Infer_from_d @ infer.r_ -> WME(i,true))

-- blocks all normal inferences with *only* 'i' in consequents
WME(i,true) =

let
Applicable = {(R_,A_,C_) | (R_,A_,C_) <- deductions, member(wme.i,A_)

or (card(C_) > 1 and member(wme.i,C_))}

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 57
QinetiQ Proprietary

UNCLASSIFIED

Forget = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(wme.i,A_)}
within

 -- allow learn 'c of C'
([] r_ <- Applicable @ infer.r_ -> WME(i,true))

[]
 -- forget 'i'
([] r_ <- Forget @ infer.r_ -> WME(i,false))

-- DISABLE ACTION

-- A "disable" action is a similar to a WME, but differs as follows:
-- - a "disable" action is cancelled implicitly by a normal inference
-- of the right type, i.e. "O-support" for "O-support" WMEs
-- - an "O-support" (persistent) "disable" action is not forgotten by a
-- "destructive" inference when one of the antecedents

alpha_DISABLE(i) =
let

 -- the rules that may request or cancel a "disable" action.
Rules = if o_supported(i) then o_support else i_support

within
Union({

{ infer.(R_,A_,C_) | (R_,A_,C_) <- union(deductions,ddeductions),
member(Disable.wme.i,C_) or member(Disable.wme.i,A_) },

{ infer.(R_,A_,C_) | (R_,A_,C_) <- Rules, member(wme.i,C_)}
})

-- blocks all normal inferences (when true) with *only* 'disable.i' in consequents
DISABLE(i,bool) =

let
 -- the rules that may request or cancel a "disable" action.
Rules = if o_supported(i) then o_support else i_support
Request = {(R_,A_,C_) | (R_,A_,C_) <- Rules, (not bool or card(C_) > 1),

member(Disable.wme.i,C_)}
Cancel = {(R_,A_,C_) | (R_,A_,C_) <- Rules, member(wme.i,C_)}

 -- the rules that trigger and perform the "disable" action.
Trigger = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(Disable.wme.i,C_)}
Perform = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(Disable.wme.i,A_)}

within
 -- request or trigger a "disable" action.
([] r_ <- union(Request,Trigger) @ infer.r_ -> DISABLE(i,true))

[]
 -- cancel a "disable" action.
([] r_ <- Cancel @ infer.r_ -> DISABLE(i,false))

[]
 -- perform a "disable" action.
bool & ([] r_ <- Perform @ infer.r_ -> DISABLE(i,o_supported(i)))

-- ORACLE

-- When an "O-support" rule fires, prevent it from continually firing unless
-- progress is being made, hence 'livelock' should not occur unless caused by
-- rule interactions.
--
-- The 'oracle' only allows a rule to re-fire when one of its consequents has
-- previously been 'false'. As "O-support" WMEs are explicitly added and removed,
-- we may simply monitor the firing of other "O-support" rules that add or remove
-- the consequents (and *not* the belief maintenance rules!)

alpha_ORACLE(rule_@@(_,_,RHS_)) =
let

Pos = { infer.rule_, infer.(R_,A_,C_) | (R_,A_,C_) <- o_support, wme.F_ <-
RHS_,

member(Disable.wme.F_,C_) }
Neg = { infer.(R_,A_,C_) | (R_,A_,C_) <- o_support, Disable.wme.F_ <- RHS_,

 member(wme.F_,C_) }
within

union(Pos,Neg)

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 58
QinetiQ Proprietary

UNCLASSIFIED

ORACLE(rule_@@(_,_,RHS_),fired_) =
let

Pos = { (R_,A_,C_) | wme.F_ <- RHS_, (R_,A_,C_) <- o_support,
member(Disable.wme.F_,C_) }

Neg = { (R_,A_,C_) | Disable.wme.F_ <- RHS_, (R_,A_,C_) <- o_support,
member(wme.F_,C_) }

within
 -- a rule may fire once
not(fired_) & infer.rule_ -> ORACLE(rule_,true)

[]
 -- the rule may fire again once one of its consequents goes 'false'
([] r_ <- union(Pos,Neg) @ infer.r_ -> ORACLE(rule_,false))

-- INFERENCES

INFERENCES(initials_) =
let

facts_ = Union({ A_,C_ | (_,A_,C_) <- union(deductions,ddeductions)})
wmes_ = { i | wme.i <- facts_ }
disables_ = { i | Disable.wme.i <- facts_ }

 -- we add oracles to "O-support" rules that have multiple consequents
 -- and do not disable themselves
oracles_ = { (R_,A_,C_) | (R_,A_,C_) <- o_support, card(C_) > 1,

Disable.wme.F_ <- C_, not member(wme.F_,A_) }
alpha_WMES = Union({alpha_WME(i) | i <- wmes_})
WMES = || i : wmes_ @ [alpha_WME(i)] WME(i,member(i,initials_))
alpha_DISABLES = Union({alpha_DISABLE(i) | i <- disables_})
DISABLES = || i : disables_ @ [alpha_DISABLE(i)] DISABLE(i,false)
alpha_ORACLES = Union({alpha_ORACLE(r_) | r_ <- oracles_})
ORACLES = || r_ : oracles_ @ [alpha_ORACLE(r_)] ORACLE(r_,false)

within
(WMES [alpha_WMES || alpha_DISABLES] DISABLES)

[union(alpha_WMES,alpha_DISABLES) || alpha_ORACLES] ORACLES

-- DECIDE MODULE

-- Model the decision cycle which maps operator proposals to operator decisions,
-- conveys external input/output to and from the system and ??
--
-- The decision cycle consists of separate "phases" of production rule firing,
-- with one phases separated from the next by system aquiescence (no more rules
-- are eligible to fire).
--
-- Although we could perhaps

alpha_DECIDE = { infer.(R_,A_,C_) | (R_,A_,C_) <- deductions,
inter({|propose,operator|},union(A_,C_)) != {} }

-- maps proposals to applicable operator inferences before tock'ing.

DECIDE =
let

proposals(op_) = { (R_,A_,C_) | (R_,A_,C_) <- deductions,
member(propose.op_,C_) }

within
([] op_ : Operator, r_ : proposals(op_) @ infer.r_ -> decide.op_ ->

DECIDED(op_))

DECIDED(op) =
let

operators = { (R_,A_,C_) | (R_,A_,C_) <- deductions, member(operator.op,A_) }
within

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 59
QinetiQ Proprietary

UNCLASSIFIED

([] r_ <- operators @ infer.r_ -> DECIDED(op))
[]

tock -> DECIDE

normal_goal = {
st.st.initialised.yes,
goal.block_1.name.a,
goal.block_1.on.b,
goal.block_1.below.o,
goal.block_2.name.b,
goal.block_2.on.c,
goal.block_2.below.a,
goal.block_3.name.c,
goal.block_3.on.table,
goal.block_3.below.b,
st.block_1.name.a,
st.block_1.on.table,
st.block_1.below.o,
st.block_2.name.b,
st.block_2.on.table,
st.block_2.below.o,
st.block_3.name.c,
st.block_3.on.table,
st.block_3.below.o

}

no_goal = {
st.st.initialised.no

}

initially_true = no_goal

transparent chase

belief_rules = { infer.r_ | r_ <- ddeductions }

CHASED = chase(INFERENCES(initially_true) \ belief_rules)

-- this process is deterministic!
TEST = CHASED [| alpha_DECIDE |] DECIDE

LIVELOCK_TEST = TEST \ { infer.r_ | r_ <- Union({deductions}) }

SYSTEM = INFERENCES(initially_true) [| alpha_DECIDE |] DECIDE

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 60
QinetiQ Proprietary

UNCLASSIFIED

Initial distribution list
External

Dr C Leach, RT(RAO RD WPE and OP1) MOD

R Piller, RPC(WPE) Dstl

Dstl Knowledge Services

QinetiQ

Information Resources

Dr R Trumper, Channel Manager Portsdown West

Prof. C O’Halloran Malvern

R Harrison Malvern

Prof. J Woodcock Kent University

A McEwan Kent University

A T McCallum Bedford

Dr Y Patel Bedford

Dr J Platts Bedford

M Downes, BGM Platform Systems Bedford

R Reading Bedford

Dr S W Willcox Blue Bear Systems Research, Ltd

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 61
QinetiQ Proprietary

UNCLASSIFIED

Report documentation page
Originator's Report Number QinetiQ/FST/CR041616/1.0

Originator's Name and Location
A T McCallum, Room 47, Building 109, The
Enclave, Thurleigh, BEDFORD, MK44 2FQ

Customer Contract Number and Period
Covered FST/EGC/077

Customer Sponsor's Post/Name and
Location

Dr C Leach, DG(R&T)-(RD EGC)

Report Protective Marking and
any other markings

Date of issue Pagination No. of
references

QinetiQ Proprietary 26 March 2004 Cover + 62 [11]

Report Title

Rationalising Over-Determined Intelligence

Translation / Conference details (if translation give foreign title / if part of conference then
give conference particulars)

None

Title Protective Marking QinetiQ Proprietary

Authors R D Harrison, C M O’Halloran, J Woodcock and A
McEwan

Downgrading Statement None

Secondary Release Limitations DEFCON 705 (Edn 11/02)

Announcement Limitations None

Keywords / Descriptors UAV, Agents, Autonomy, Clearance, Formal Methods

Abstract

The certification of Machine Intelligence algorithms falls into two parts: the formal
mathematical validation of the safety of the Machine Intelligence algorithm; and the formal
mathematical verification of the implementation of the algorithm. This report describes a
subset of the Soar language that is essentially certifiable and, by providing a formal
semantics for programs written in this subset, that can be verified for healthiness
properties, such as deadlock or livelock. In particular, the concept of over-determined
machine intelligence is taken to be over specialisation leading to rule redundancy, which
this report discusses and shows can be automatically detected as a healthiness property.
The formal semantics for the subset of the Soar language are provided by a prototype
translator from Soar into an non-monotonic inference engine in the formal language of
Communicating Sequential Processes, CSP. Further such Soar programs can be verified
against critical properties identified by a system safety case for an autonomous UAV.

Abstract Protective Marking: UNCLASSIFIED QinetiQ Proprietary

This form meets DRIC-SPEC 1000 issue 7

UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 62
QinetiQ Proprietary

UNCLASSIFIED

Blank page

	Introduction
	Contractual information
	Objectives
	Report outline

	Soar
	Soar Language Overview
	Return to Blocks-World

	A Refined CSP Model of Soar
	Healthiness Properties
	The modelling approach

	Soar Language Constraints for analysis
	Fundamental Constraints
	Current Limitations

	Translator Design
	Overview
	The Internal Representation
	Generation

	Over-determined Intelligence
	What is over-determined intelligence?
	Classes of redundant rules
	A simple example

	Analysis & Examples
	Blocks World
	RoadSearch Case Study

	Conclusions
	Summary
	Conclusions

	Recommendations
	References

