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1 Introduction

Our tool, csp2hc, already mechanises the translation of a considerable subset of CSPM to
Handel-C, which includes the following features.

1. SKIP

2. STOP

3. Sequential composition

4. Recursion

5. Prefixing

6. External Choice

7. Concurrency

8. Datatypes

9. Constants

10. Expressions

11. if _ then _ else _

Although they represent a subset of CSPM , using these constructors, we are already
able to automatically translate many of the classical CSP examples in the literature,
like the examples presented in Appendix A: the dining philosophers and the level cross-
ing. More importantly, the phase controller of the CMOS can already be automatically
translated using csp2hc. Currently, we are working on the features needed to achieve
the automatic translation of the heap model of the CMOS. Ultimately, we aim at the
automatic translation of the whole CMOS.

In what follows we describe the details of our efforts. Section 2 discussed the aspects
involving the current status of csp2hc. These include the conventions and assumptions
made by csp2hc on the source CSPM specification, a list of the CSPM constructors that
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are supported by csp2hc, the current restrictions on these constructors, and an outline
of the solutions implemented by the translator. The vast majority of these restrictions
are intended to be removed in the next stages of the project. The solutions for these are
presented as needed in Section 3.

In Section 2.1, we list which restrictions on the CSPM are already being automatically
checked by csp2hc and which of them are not being automatically checked by the tool.

Our tool uses a CSPM parser/type checker that has been implemented by our collab-
orators in UFPE/Brazil. Our efforts created a heavy load of tests that have identified a
couple of errors in this tool. These errors are listed in Section 2.2 and they have already
been reported to the developers of the CSPM parser, who have committed themselves to
fix these bugs.

Our translator needs some extra information from the user as, for instance, the number
of bits that are used to represent integers. These are given by the user to csp2hc in the
form of directives (comments in the source CSPM specification with a special format). In
Section 2.3, we describe the directives that are used by csp2hc.

Our main objective is to fully automate the translation of the CMOS. With this
purpose, we have created three milestones: the phase controller, the heap model, and the
CMOS. In Section 3, we describe the efforts in the translation of these milestones: we
describe the CSPM constructors whose translation are already mechanised, and the ones
whose translation have not yet been mechanised. For those whose translation have not
yet been mechanised, we provide possible solutions for their implementation in Handel-C.

Finally, Section 4 present csp2hc and discuss how it can be used.

2 Current Status

csp2hc uses a a CSPM parser/type checker that has been implemented by our collaborators
in UFPE/Brazil. This parser, with exception of a few constructors in which it presented
some problems, already accepts all the CSPM constructors needed for the full translation
of the CMOS.

The input to csp2hc is a CSPM specification that has already been checked in FDR.
Furthermore, csp2hc considers that none of the Handel-C keywords are present in the
source CSPM . Besides, some further keywords are used by csp2hc and cannot be part of
the input CSPM specification as well. They are:

• clock1

• SYNC

• syncout

• syncin

• integer

• integer_offset
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• For every possible integer value i:

– i ≥ 0: integer_i_s

– i < 0: integer_neg_i_s

• boolean

• true

• false

• true_s

• false_s

• For every type T in the specification (including integer and boolean):

– T_set

– T_nil

– T_card

– T_sets_LUT

• For every simple datatype value v

– v

– v_s

• For every complex datatype value C.v1.v2, where C is the constructor declared as
C.T1.T2

– C_T1_T2_LUT

– C_v1_v2

– C_v1_v2_s

– If any of the values vi is a negative integer, then we have neg_vi instead.

• MUTUAL_REC

• PROGRAM_COUNTER

• KEEP_LOOPING

In what follows, we list the CSPM constructors that are supported by csp2hc. For
each one of them, we present the restrictions on these constructors, and an outline of the
solutions implemented by the translator.

1. SKIP

(a) Restrictions: None
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(b) Solution: translates to nothing.

2. STOP

(a) Restrictions: None

(b) Solution: translates to an infinite loop that does nothing.

3. Sequential composition

(a) Restrictions: None

(b) Solution: translates to a sequential composition.

4. Recursion

(a) Simple Recursion

i. Restrictions:
A. Only Tail Recursion

ii. Solution: tail recursions are translated to a loop that iterates while a
KEEP_LOOPING variable is true. In each iteration, the loop initially sets
KEEP_LOOPING to false; the tail recursion sets this variable to true. Pos-
sible process arguments are declared as local copies, which are initialised
before the beginning of the loop with the given value and are updated
before the end of each iteration.
For instance, process P(x) = c1 -> P(x+1) is translated as follows.
inline void P1 (integer x){

boolean KEEP_LOOPING;
integer P1_local_x;
P1_local_x = x;
KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
seq{

seq{
c! P1_local_x;
P1_local_x = x + 1;
KEEP_LOOPING = true;

}
}

}
}

(b) Mutual Recursion

i. Restrictions:
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A. Parallel composition (and interleaving) only in the main process given
in the directive (as described in Section 2.3.3).

ii. Solution: the solution is to transform the whole model into an action sys-
tem like model. First, we declare all the processes parameters as global
variables. Then, we declare a single method parametrised by a process
counter that will represent the whole system. Its body is a loop on a vari-
able KEEP_LOOPING. In each iteration, we check the value of the program
counter and behave accordingly. Possible process arguments are declared
as global copies, which are initialised before each invocation of the mutual
recursion.
For instance, let us consider the following specification:
P1(x) = c!x -> P2(x+1)
P2(x) = c!x -> P1(x-1)

It is translated as follows.
integer P1_local_x, P2_local_x;
inline void MUTUAL_REC(int 1 PROGRAM_COUNTER){

KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
switch(PROGRAM_COUNTER){

case P1 :{
seq{

c! P1_local_x;
P2_local_x = x + 1;
PROGRAM_COUNTER = P2;
KEEP_LOOPING = true;

}
break;

}

case P2 :{
seq{

c! P2_local_x;
P1_local_x = x - 1;
PROGRAM_COUNTER = P1;
KEEP_LOOPING = true;

}
break;

}
}

}
}
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5. Prefixing

(a) Restrictions:

i. Synchronisations of the form

channel name[.csp expression]∗[?var name | !csp expression]0..1

where csp expression is as in Section 10a.
ii. Projections are used consistently. For instance, if a channel is used as c.e,

it cannot be used as c!e elsewhere in the specification.
(b) Solution:

i. Communications are translated to Handel-C communications
ii. Simple synchronisations are translated to communications of dumb values.

A directive indicates if the channel is an input or output
iii. Synchronisations c.e are translated to an access to the e-th element of an

array c of channels. For each type T in the system, we declare a constant
T_card that contains the number of element of elements in that type. This
constant is used in the declaration of the array. Besides, signed integers
are cast into unsigned integers.

6. External Choice

(a) Restrictions:

i. Only for prefixing processes.
ii. No two branches in an external choice with an on the input variables of

the same name.
(b) Solution: translate to Handel-C prialt

7. Concurrency

(a) Restrictions:

i. No multi-synchronisation
(b) Sharing Parallel

i. Restrictions:
A. Only for processes with no interleaved events in the synchronisation

set: for every two processes P and Q composed in parallel in a channel
set CS (P [| CS |] Q), we have that α(P) ∩ α(Q) ⊆ CS

ii. Solution: translate to Handel-C parallelism
(c) Alphabetised Parallel

i. Restrictions:
A. Only for processes with no interleaved events in the synchronisation

set: for every two processes P and Q synchronising in parallel in the
channel sets CS1 and CS2 (P [ CS1 || CS2 ] Q), we have that the
synchronisation sets satisfy the condition α(P) ∩ α(Q) ⊆ CS1∩ CS2.
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ii. Solution: translate to Handel-C parallelism

(d) Interleaving

i. Restrictions:
A. : Only for processes with no events in common: for every two processes

P and Q interleaved (P ||| Q), we have that α(P) ∩ α(Q) = ∅
ii. Solution: translate to Handel-C parallelism

8. Datatypes

(a) Restrictions: No mutually recursive datatypes

(b) Simple datatypes

i. Restrictions: None
ii. Solution: the type is declared as an unsigned int i, where i is the

number of bits need to represent the cardinality of the type. Each el-
ement of the datatype corresponds to an integer value (starting from
0). We also declare the cardinality of the type. By way of illustration,
datatype Alpha = a | b is translated as follows.
#define Alpha unsigned int 1
#define b 0
#define a 1
#define Alpha_card 2

(c) Complex datatypes

i. Restrictions:
A. Constants cannot be given as argument to the constructors (tags)
B. Sets cannot be given as argument to the constructors (tags)

ii. Solution: constructors are seen as functions. For each element in the
domain of the constructor there exists a corresponding value in the enu-
meration that corresponds to the datatype. For each possible constructor
in the system, create a lookup table that, given the values of the domain
of the constructor, returns the corresponding value in the enumeration of
the datatype. For instance, let us consider the following datatype:
datatype Char = Letter.Alpha | Number.Int

The translation of this datatype is presented below:
#define Char unsigned int 3
#define Number_neg_1 0
#define Number_neg_2 1
#define Number_1 2
#define Number_0 3
#define Letter_a 4
#define Letter_b 5
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#define Char_card 6 static Char
Char_Number_LUT[integer_card] ={

Number_0 ,Number_1 ,Number_neg_2 ,Number_neg_1};
static Char Char_Letter_LUT[Alpha_card] ={

Letter_b ,Letter_a};

(d) Int

i. Restrictions: None
ii. Solution: Declare a constant integer that represents the integer within

the Handel-C code as an int of n bits, where n is given as a directive and
represents the number of bits in the representation of integers within the
system.

(e) Bool

i. Restrictions: None
ii. Solution: Declare the constants true as 1 and false as 0, and declare

boolean as unsigned int 1

(f) Sets

i. Restrictions:
A. Cannot be used as channels type
B. Sets cannot be used in a channel usage

ii. Solution: we use a bit presentation for sets. For every type T in the
system we declare a constant T_set unsigned int T_card; furthermore,
for every element e, we declare a singleton set e_s; finally, we declare the
empty set T_nil_s. For instance, for datatype Alpha = a | b:
#define Alpha_set unsigned int Alpha_card
#define a_s 0b10
#define b_s 0b01
#define Alpha_nil_s 0b00

We also declare a lookup table M_sets_LUT that that returns singleton sets
for every possible value in the system. When reading elements of a set,
each element e is translated to M[e]; we make the bitwise logical or of the
translation of every element.

9. Constants

(a) Restrictions: None

(b) Solution: translate to a Handel-C macro expression

10. Expressions
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(a) Restrictions: just in the following syntax

csp expression ::= logical expression
| math expression
| rel expression
| datatype member

logical expression ::= true | false
| logical expression and logical expression
| logical expression or logical expression
| not logical expression

math expression ::= [0 . . 9]+1

| -math expression
| math expression +math expression
| math expression -math expression
| math expression *math expression
| math expression /math expression
| math expression %math expression

rel expression ::= math expression ==math expression
| math expression !=math expression
| math expression >math expression
| math expression >=math expression
| math expression <math expression
| math expression <=math expression

(b) Solution: translate to the corresponding Handel-C expression

11. if _ then _ else _

(a) Restrictions: None

(b) Solution: Use Handel-C’s if ( _ ) { _ } else { _ }.

2.1 Restrictions Verification

csp2hc is able to automatically verify most of the restrictions currently imposed on the
accepted constructors. This means that if any of these restrictions is not satisfied by the
input CSPM , csp2hc indicates the error to the user. The verified restrictions are:

• Syntax of expressions (10a)

• Accepted prefixing formats (5(a)i)

• Consistent use of channel projections (5(a)ii)

• No mutually recursive datatypes (8a)

• No constant are given to datatype constructors (8(c)iA)
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• No sets are given to datatype constructors (8(c)iB)

• No two branches in an external choice with an on the input variables of the same
name (6(a)ii)

• No non-tail recursive processes (4(a)iA)

• Parallel composition on mutually recursive processes only in the main process (4(b)iA)

• No channel sets used in channel declarations (8(f)iA)

• No linked parallelism

However, for timing restrictions only, some restrictions are not being checked by
csp2hc; in this case, if any of these restrictions is not satisfied by the input CSPM , csp2hc
will generate a Handel-C code that does not implement correctly the original CSPM spec-
ification.

• Not all unsupported constructors are being identified by csp2hc

• External choice only between prefixing processes (6(a)i)

• Restrictions on the synchronisation channel sets of shared parallel composition (7(b)iA),
alphabetised parallel composition (7(c)iA), and interleaving (7(d)iA)

• Sets cannot be used in a channel usage 8(f)iB

2.2 Identified Errors in the Parser/Type Checker

Due to our big number of tests, we have identified a couple of errors in the CSPM

parser/type checker. In what follows, we describe these errors. For some of them, we
provide temporary solutions.

• No comments within a CSPM definition

• The type checker is raising an exception in the invocation of the following para-
metrised process:

P(x) = c -> P(x)

Temporary solution: declare a constant x in the CSPM .

• The type checker is raising an exception in the invocation of the following para-
metrised process:

P(x) = c -> P(x+1)
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Temporary solution: declare a function inc = \ x @ x + 1 in the CSP specifi-
cation, and invoke P(inc(x)) instead.

• Intervals (Interval = {1..3}) are not being accepted by the type checker

• Datatypes constructors are accepting constants and they shouldn’t
datatype Alpha = a | b | Z.ZERO, where ZERO = 0

• No constructor Set

• Sets of elements of a datatype are raising a
CspSemanticException: referenced name ’a’ was not declared

datatype Letter = a | b
SET_LETTER_1 = {a, b}

In the near future we will receive a new version of the CSPM parser/type checker that
will include the corrections of these errors.

2.3 Directives

In order to be able to translate the source CSPM code, our translator needs some extra
information from the user. These are called directives, and are input in the form of
comments in the source CSPM specification with a special format. This format is a line
commented as follows:

--!! DIRECTIVE

In what follows we discuss the current directives used by csp2hc.

2.3.1 Input and Output Channels

This directive is used to give to csp2hc the indication that a channel, which is not explicitly
used as an input or as an output, is either an input or an output.

• Format: --!! channel channel name [ in , out ]1 within process name

• Mandatory: for every channel c used as an synchronisation event anywhere in the
system

For instance, in the following input:

--!! channel c in within P
P = c -> SKIP

The directive indicates that c is an input channel in process P.
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2.3.2 Argument type

This directive is used to give to csp2hc the type of each of the arguments of a parametrised
process.

• Format: --!! arg variable name handelc type within process name

• Mandatory: for every process argument

For instance, in the following input:

--!! arg x integer within P
--!! arg y Alpha within P
P(x,y) = c.x!y -> SKIP

The directive indicates that the types of arguments x and y of P are Handel-C’s integer
and Alpha, respectively.

2.3.3 Main Process

This directive is used to give to csp2hc the main process, which represents the main
behaviour of the system.

• Format: --!! main csp process expression

• Optional: Default is SKIP

For instance, in the following input:

--!! main P [| {| c |} |] Q

--!! channel c in within P
P = c -> SKIP

--!! channel c in within Q
Q = c -> SKIP

The directive indicates that system behaves like the parallel composition of P and Q.

2.3.4 Number of bits for integers

This directive is used to give to csp2hc the number of bits used to represented integer
number in the system.

• Format: --!! int_bits [1 . . 9]+1[0 . . 9]∗

• Optional: Default is 1

For instance, in the following input:

--!! int_bits 2

The directive indicates that integers numbers in the system are those signed integer
number that can be represented using two bits, thus -2, -1, 0, and 1 are valid integer
numbers within this system.
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Bit 1 Bit 0 Signed Number Unsigned Number
0 0 0 0
0 1 1 1
1 0 -2 2
1 1 -1 3

Table 1: Unsigned and Signed Integers

Warning The number of bits declared by this directive must be sufficient to include the
evaluation of all integer expressions within the specification. Otherwise, this inconsistency
generates the following problem in the generated code. As previously described, if we
declare integers to be of 2 bits, we are considering -2, -1, 0, and 1 as the possible values
for integers in the specifications. If, however, in some point of the specification the values
2 and 3 are used, the Handel-C compiler accepts the generated code, but it interprets
these values as -2 and -1, respectively. So, the specification of a parallel composition
of the events c.-2 and c.2 does not synchronise, but the generated Handel-C code will
synchronise. Although the Handel-C compiler should not accept such behaviour, the
table 1 gives an insight why such behaviour happens: when unsigned, the numbers 2 and
3 have the same bitwise representation as the signed numbers -2 and -1, respectively.

2.3.5 Type of Empty Sets

Type inferencing is not possible for empty sets. For this reason, csp2hc needs a directive
that indicates the type of empty sets. Currently, this is given for each process.

• Format: --!! empty_set_of handelc type within [process name | datatype name
| constant name]

• Mandatory: for every empty set used in the system

For instance, in the following input:

--!! empty_set_of integer within P
P = c!{} -> SKIP

The directive indicates that empty set within P is an empty set of integers.

3 Translating CMOS

The final objective of the project is to automatically translate the whole of the CMOS
specification; however, due to the complexity of the CMOS, we have drawn three mile-
stones for the project: the phase controller, the heap model, and the CMOS. In what
follows, we indicate for each of these milestones, the constructors whose translation are
already mechanised, and the ones whose translation have not yet been mechanised. For
those whose translation have not yet been mechanised, we provide possible solutions for
their implementation in Handel-C.
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3.1 Phase Controller

The constructors needed for the translation of the phase controller are:

1. Mutual Recursion (Requirement 4b)

2. Prefixing (Requirement 5)

3. External choice (Requirement 6)

4. Simple datatypes (Requirement 8b)

The current version of csp2hc is already able to automatically translate the phase con-
troller.

3.2 Heap Model

The current version of csp2hc is already able to automatically translate part of the con-
structors used in the heap model. These constructors are:

1. STOP (Requirement 2)

2. Mutual recursion (Requirement 4b)

3. Prefixing (Requirement 5)

4. External choice (Requirement 6)

5. Sharing parallel (Requirement 7b)

6. Simple datatype (Requirement 8b)

7. Int (Requirement 8d)

8. Bool (Requirement 8e)

9. Constants (Requirement 9)

For timing restrictions only, the translation of the following constructors are not yet
mechanised.

1. Support to multi-synchronisation

2. Sets can be given to datatype constructors

3. Boolean guards can take part in the external choice

4. Set expressions

(a) Sets as channel types

(b) Sets in communications
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(c) Sets as arguments

(d) Set comprehension

(e) Integer ranges

(f) diff

(g) card

(h) member

(i) set

(j) pick

5. Declaration of functions

6. Declaration of nametype

7. let _ within _

8. Constrained inputs

9. Pattern matching

10. Sequences expressions

(a) Sequences Display

(b) Sequences concatenation

(c) Seq

11. Tuples expressions

In what follows we discuss the solutions that will be implemented for each of these con-
structors.

Solutions

1. Support to multi-synchronisation

(a) Restrictions: None. Removes restriction 7(a)i

(b) Solution: implement multi-synchronisation using a protocol that uses a cen-
tralised controller. By way of illustration, let us consider the following three
process:

P = c!0 -> c?v_1 -> SKIP
Q = c?v_1 -> c!1 -> SKIP
R = c?v_1 -> d -> c?v_2 -> SKIP

We can statically identify that c is a multi-synchronised channel in the par-
allel composition P [| {| c, d|} |] (Q [| {| c, d|} |] R), and that it
involves three processes. The three processes would be translated as follows:
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inline void P (){
seq{ offer_c[0]!syncout;

seq{ offer_c_val! 0;
seq{ integer dumb_int; c? dumb_int;

seq{ offer_c[0]!syncout;
seq{ integer v_1;

c? v_1; }; }; }; }; }
}
inline void Q (){

seq{ offer_c[1]!syncout;
seq{ integer v_1; c? v_1;

seq{ offer_c[1]!syncout;
seq{ offer_c_val! 1;

seq{ integer dumb_int;
c? dumb_int;

}; }; }; }; }
}
inline void R (){

seq{ offer_c[2]!syncout;
seq{ integer v_1; c? v_1;

seq{ d!syncout;
seq{ offer_c[2]!syncout;

seq{ integer v_2; c? v_2;
}; }; }; }; }

}

where dumb_int is a fresh variable name.
The code for the controller would be as follows:

inline void c_MS_controller() {
boolean stopped_0, stopped_1, stopped_2, stopped;
par { stopped_0 = false; stopped_1 = false; stopped_2 = false; };
stopped = stopped_0 || stopped_1 || stopped_2;
while (!stopped) {

seq{ par { stopped_0 = c_MS_controller_wait_for(0);
stopped_1 = c_MS_controller_wait_for(1);
stopped_2 = c_MS_controller_wait_for(2); };

stopped = stopped_0 || stopped_1 || stopped_2;
if (!stopped) {

seq { integer v; offer_c_val? v; c! v; }
}

}
}

}
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inline boolean c_MS_controller_wait_for(integer i) {
boolean stopped; stopped = false;
prialt{

case stop_c?syncin :{ stopped = true; };
break;
case offer_c[(unsigned)i]?syncin:{ ; };
break;

}
return stopped;

}

The parallel composition P [| {| c, d|} |] (Q [| {| c, d|} |] R) is then
implemented as follows:

par{
seq{ par{ P(); Q(); S(); };

stop_c!syncout; };
c_MS_controller();

}

2. Sets can be given to datatype constructors

(a) Restrictions: None. It removes restriction 8(c)iB

(b) Solution: Since this specification has already been checked by FDR, we can
use the maximal type of the set instead of the set itself. For this, we need
to infer the type of the set; the types of empty sets need to be given via a
directive.

3. Boolean guards can take part in the external choice

(a) Restrictions: None. It relaxes restriction 6(a)i

(b) Solution: Use the following transformation before translation

(g & P) [] Q = if g then (P [] Q) else Q

4. Set expressions

(a) Sets as channel types

i. Restrictions: None. It removes restrictions 8(f)iA
ii. Solution:Since this specification has already been checked by FDR, we

can use the maximal type of the set instead of the set itself. For this, we
need to infer the type of the set; the types of empty sets need to be given
via a directive.
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(b) Sets in communications
i. Restrictions: None
ii. Solution: Sets are the bitwise or of the corresponding singleton sets (in

the lookup table) of the elements.
(c) Sets as arguments

i. Restrictions: None
ii. Solution: Sets are the bitwise or of the corresponding singleton sets (in

the lookup table) of the elements.
(d) Set comprehension

i. Restrictions: None
ii. Solution: Create a library in Handel-C that allows the translation of such

constructions
(e) Integer ranges

i. Restrictions: None
ii. Solution: Create a bitwise or of every integer from the minimun to the

maximum value.
(f) diff

i. Restrictions: None
ii. Solution: macro expr diff(s,t) = (s & (~t));

(g) card

i. Restrictions: None
ii. Solution: Create a lookup table containing 0 and 1.

static integer card_LUT[2] = {0 , 1};

Declare the following macro, where n is the maximum integer value, based
on the given directive.
macro expr card(b) = (LUT[b[0]] + LUT[b[1]] + ... + LUT[b[n]]);

(h) Union

i. Restrictions: None
ii. Solution: Bitwise or of all the elements, which are themselves sets.

(i) member

i. Restrictions: None
ii. Solution: First, for every type, there will be a lookup table that returns

the singleton set that contain each one of the elements in that type. For
instance, for the booleans we have:
static boolean_set singleton_boolean_sets_LUT[boolean_card] ={

true_s, false_s
};
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For the integers (i.e. 2 bits integers), the lookup table will look like this:
static integer_set singleton_integer_sets_LUT[integer_card] ={

integer_0_s, integer_1_s,
integer_neg_2_s, integer_neg_1_s

};

Then, the set membership will be given by the following macro expression:
macro expr member(e,s) =

((singleton_integer_sets_LUT[(unsigned)e] | s) == s);

(j) set

i. Restrictions: None
ii. Solution: returns the bitwise or of all the elements. For instance, set([-1,0,1,2])

is
singleton_integer_sets_LUT[(unsigned)-1] |
singleton_integer_sets_LUT[(unsigned)0] |
singleton_integer_sets_LUT[(unsigned)1] |
singleton_integer_sets_LUT[(unsigned)2]

(k) pick

i. Restrictions: None
ii. Solution: we illustrate our solution with a set of a type with cardinality

eight. These are the possible singleton sets b, and the binary representation
of the element x of the singleton set.

b7 b6 b5 b4 b3 b2 b1 b0 x2 x1 x0

1 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0

From this table, we notice that we actually have a pattern in which,
pick(s) = x[2] @ x[1] @ x[0], where xi =

∨{bj | xi = 1 in binary
representation of j}. In our example, we have that:
x[2] = b[7] || b[6] || b[5] || b[4]
x[1] = b[7] || b[6] || b[3] || b[2]
x[0] = b[7] || b[5] || b[3] || b[1]
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Thus, pick(0b01000000) = 0b110 = 6

5. Declaration of functions

(a) Restrictions: None

(b) Solution: Declare as macro expressions

6. Declaration of nametype

(a) Restrictions: None

(b) Solution: Use Handel-C’s typedef.

7. let _ within _

(a) Restrictions: None

(b) Solution: Declare one global macro for each of the local variables in the order
they appear

8. Constrained inputs

(a) Restrictions: None

(b) Solution: two solutions have already been considered. They, however, need
further improvements in order to achieve a more general solution.

i. Provided we have only one-to-one communications, once we find a
constrained input in the program tree, we have to go back up to the first
parallel composition and do the following transformation from there.
(c!e -> Q [] i_l -> R)
[| {| c |} |]
(c?x:S -> P(x) [] i_r -> T)
=
( (try!e -> (c!e -> Q [] i_l -> R))
[| {| c , try |} |]
(try?x -> if member(x,S) then c?x -> P(x) [] i_r -> T

else i_r -> T) ) \ {| try |}

Notice that we consider try to be a fresh channel name and y to be a
fresh variable name within the protocol. Otherwise we index their names
with the first integers n and m, such that try_n and y_m are fresh names
within the system. However, if this parallel composition is in parallel
with another action, as the one below
c?x -> V [] i_m -> W

It may the case where the whole parallel composition in CSP allows c
to happen; if member(e,S). However, in Handel-C this may not happen
because of the clock. It may the case in which some of the interruption
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events i_x happens in the clock cycle inserted by the try event; this will
cause the event c not to be allowed to happen.

ii. Provided the expression e is in terms only of global variables (pa-
rameters are NOT global), then we already have the value available in
both sides; only the communication is needed.
(c!e -> Q [] i_l -> R)
[| {| c |} |]
(c?x:S -> P(x) [] i_r -> T)
=
(c!e -> Q [] i_l -> R)
[| {| c |} |]
( if member(e,S) then c?x -> P(x) [] i_r -> T
else i_r -> T )

9. Pattern matching

(a) Restrictions: The whole solution is equivalent to writing a functional lan-
guage compiler. Just the pattern matching used in the CMOS will be accepted.

(b) Solution:

i. For c?_, replace _ by a fresh new name
ii. For let (S,_,M,V) = E within P, translate it as

let S = E.1, M = E.3, V = E.4 within P

iii. Remaining must be refined

10. Sequences

(a) Sequences Display

i. Restrictions: None
ii. Solution: Sequences can be represented as arrays with a high water mark,

using struct. A directive must be given in order to establish the maximum
size of the array. So, for instance, if the maximum size of the sequences is
said to be six, the sequence [1,2,3] is represented as
[_,_,_,(1),2,3], with the high water mark set to 3 (we denote the high
water mark by putting the element on which the mark is between paren-
thesis. Furthermore, we write _ when the value can be any value).

(b) Sequences concatenation

i. Restrictions: None
ii. Solution: simply introduce the elements of the left-hand side sequence to

the right hand side array as follows.

[1,2] ^ [4,5,6] [Representation of sequences]

= [_,_,_,_,(1),2] ^ [_,_,_,_,(4),5,6] [Calculation]
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= [_,_,_,_,(1),_] ^ [_,_,_,(2),4,5,6] [Calculation]

= [_,_,_,_,_,_] ^ [_,_,(1),2,4,5,6] [Base case]

= [_,_,(1),2,4,5,6]

(c) Seq

i. Restrictions: None
ii. Solution: as we have a maximum number of elements for the sequences,

the sets of sequences is not infinite as in the CSP. In order to reuse the al-
ready existing translation strategies, we declare a datatype whose elements
are all the possible sequences and translate this datatype. For instance,
suppose we have three for the maximum length of the sequences. In this
case, Seq(Bool) will be translated as the following datatype:
datatype SEQ_Bool ==

SEQ_Bool_empty
| SEQ_Bool_true | SEQ_Bool_false
| SEQ_Bool_true_true | SEQ_Bool_true_false
| SEQ_Bool_false_true | SEQ_Bool_false_false

A lookup table has also to be provided in order to construct the elements
of this type.
static SEQ_Bool SEQ_Bool_LUT[7] =

{[_,_] ,
[_,true], [_,false],
[true,true], [true,false], [false,true], [false,false]};

11. Tuples

(a) Tuples Display

i. Restrictions: None
ii. Solution: Tuples can be translated using struct.

3.3 CMOS

The current version of csp2hc is already able to automatically translate part of the con-
structors used in the CMOS. These constructors are:

1. SKIP (Requirement 1)

2. STOP (Requirement 2)

3. Sequential Composition (Requirement 3)

4. Recursion (Requirement 4)
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5. Prefixing (Requirement 5)

6. External choice (Requirement 6)

7. Concurrency (Requirement 7)

8. Datatypes (Requirement 8)

9. Constants (Requirement 9)

For timing restrictions only, besides those discussed in Section 3.2 the translation of
the following constructors are not yet mechanised.

1. Channel sets

2. Renaming

(a) Non-relational Renaming

(b) Relational Renaming

3. include

4. chase

5. Remove restriction on the synchronisation channel set of sharing parallel composi-
tion (Restriction 7(b)iA) and interleaving (Restriction 7(d)iA)

6. Indexed sequence

7. Indexed parallelism

8. Replicated choices

9. module

10. Sequence comprehension

In what follows we discuss the solutions that will be implemented for each of these
constructors.

1. Channel sets

(a) Restrictions: None

(b) Solution: as for requirement 10c, we will translate a datatype that contains all
the possible channels within the system. For instance, for a system containing
the following channels

channel b channel c:Int
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and assuming two bits integers, we have the following datatype.

CHANNELS == CHANNEL_b
| CHANNEL_c_neg_2 | CHANNEL_c_neg_1
| CHANNEL_c_0 | CHANNEL_c_1

2. Renaming

(a) Non-relational Renaming

i. Restrictions: None
ii. Solution: By replacing as the following example.

P = Q[a <- b]

• Get the body of Q
• Replace a by b (let’s call this NewQ in this example)
• Translate P = NewQ

(b) Relational Renaming

i. Restrictions: to be analysed
ii. Solution: to be analysed

3. include

(a) Restrictions: None

(b) Solution: Append files before parsing.

4. chase

(a) Restrictions:

(b) Solution: Provided we have no use of the internal choice operator, the
only τ events are generated by hiding. In this case, every time we find a hiding
P \ cs in the tree, we analyse P: every external choice in P must be rewritten
such that any initial channel in the choice that is hidden must come first in
the choice. For instance:

((a -> P) [] (b -> Q)) \ {| b |}

must be rewritten as

((b -> Q) [] (a -> P)) \ {| b |}

Since we use PRIALT to implement choice, b will be given priority, which in the
end, means that we are given priority to the τ event.
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5. Remove restriction on the synchronisation channel set of sharing parallel composi-
tion (Restriction 7(b)iA) and interleaving (Restriction 7(d)iA)

(a) Restrictions: to be analysed

(b) Solution: to be analysed

6. Indexed sequence

(a) Restrictions: Only closed range numerical indexes for indexed sequences

(b) Solution: For every basic datatype d within the model there will be a func-
tion mapping d : d → N.

7. Indexed parallelism

(a) Restrictions: Only closed range numerical indexes for indexed parallel

(b) Solution: The same as 6

8. Replicated choices

(a) Restrictions: Only closed range numerical indexes for replicated choices

(b) Solution: translate the expansion of the replicated choice

9. module

(a) Restrictions: Only closed range numerical indexes for replicated choices

(b) Solution: flatten the whole specification before translation, renaming the mod-
ule components in order to avoid name clashes.

10. Sequence comprehension

(a) Restrictions: None

(b) Solution: Create a library in Handel-C that allows the translation of such
constructions

Once the translation of all these constructors are implemented the translation of the
CMOS into Handel-C will be fully automated. Besides, the vast majority of the CSP
constructs will have been translated and, as such, a large number of CSPM specifications
will be automatically translated into Handel-C.

4 Using csp2hc

In order to execute csp2hc, simply execute the file csp2hc.bat. The JVM used must be
of version 1.5.0_06 or higher. The interface is very simple and presented in Figure 1: it is
composed, basically, by a log window, in which all the stages of the translation are logged.
In order to use the translator, simply open the CSP file (.csp) you want to translate and,
if the translation is successful, save the result in a Handel-C (.hcc) file; the user is then
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Figure 1: csp2hc Graphic Interface
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given the choice of translating another file. If, however, the translation is not successful,
an error message is given, and the reason for the error is shown in the log window. The
user is given the choice of correcting the file and trying to translate it again. In order to
finish the execution of the tool, simply click close in the log window.

In the future, the interface could be incremented. For instance, it could have three
tabs: the translation log, the source CSP file, and the target Handel-C file. This would
allow the user to edit the files without the need of an extra text editor.

5 Further requirements

In this project, we have concentrated on the features and requirements of the CMOS;
however, some constructs are not used in the CMOS and were not considered. They are
listed below.

1. Two processes writing to the same channel on the same clock cycle

2. The same channels is involved in a choice, it must be in the same direction.

3. Lambda terms

4. Interrupts

5. CHAOS

6. /\

7. Untimed time out

8. external

9. Nested blocks of comment markers

In order to achieve a full automatic translation from CSPM to Handel-C these are
some of the constructs that still need to be taking into account.

27



A Transcripts

Dining Philosophers

-------------------------
-- DINING PHILOSOPHERS --
-------------------------

--!! main TABLE_P

--!! int_bits 4

-- To get around the type checker
i = 0
j = 0

-- Maximum number of Philosophers
MAX_PHIL = 5

---------------
-- FUNCTIONS --
---------------

-- Decrements i by one modulo j
dec_mod = \ i,j @ (i - 1) % j

-- Increments i by one modulo j
inc_mod = \ i,j @ (i + 1) % j

-- Returns the maximum between i and j
max = \ i,j @ if i > j then i else j

-- Returns the minimum between i and j
min = \ i,j @ if i < j then i else j

--------------
-- CHANNELS --
--------------

channel thinks, sits, eats, getsup:Int
-- FOR FDR CHECK, COMMENT LINE ABOVE AND UNCOMMENT LINE BELOW
--channel thinks, sits, eats, getsup:{0..MAX_PHIL-1}
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channel picksup, putsdown:Int.Int
-- FOR FDR CHECK, COMMENT LINE ABOVE AND UNCOMMENT LINE BELOW
--channel picksup, putsdown:{0..MAX_PHIL-1}.{0..MAX_PHIL-1}

-----------
-- FORKS --
-----------
--!! channel picksup in within FORK
--!! channel putsdown in within FORK
--!! arg i integer within FORK
FORK(i) =

picksup.i.i -> putsdown.i.i -> FORK(i)
[]
picksup.dec_mod(i,MAX_PHIL).i ->

putsdown.dec_mod(i,MAX_PHIL).i -> FORK(i)

------------------
-- PHILOSOPHERS --
------------------
--!! channel picksup out within PHIL
--!! channel putsdown out within PHIL
--!! channel thinks out within PHIL
--!! channel sits out within PHIL
--!! channel eats out within PHIL
--!! channel getsup out within PHIL
--!! arg i integer within PHIL
PHIL(i) =

thinks.i -> sits.i ->
picksup.i.min(i,inc_mod(i,MAX_PHIL)) ->

picksup.i.max(i,inc_mod(i,MAX_PHIL)) -> eats.i ->
putsdown.i.inc_mod(i,MAX_PHIL) ->

putsdown.i.i -> getsup.i -> PHIL(i)

PHIL_FORK_SYNC = {| picksup, putsdown |}
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-----------------
-- ENVIRONMENT --
-----------------

--!! channel thinks in within THINKS
--!! arg i integer within THINKS
THINKS(i) = thinks.i -> THINKS(i)
THINKING = ( THINKS(0)

|||
(THINKS(1) ||| (THINKS(2) ||| (THINKS(3) ||| THINKS(4)))) )

--!! channel sits in within SITS
--!! arg i integer within SITS
SITS(i) = sits.i -> SITS(i)
SITTING = (SITS(0) ||| (SITS(1) ||| (SITS(2) ||| (SITS(3) ||| SITS(4)))))

--!! channel eats in within EATS
--!! arg i integer within EATS
EATS(i) = eats.i -> EATS(i)
EATTING = (EATS(0) ||| (EATS(1) ||| (EATS(2) ||| (EATS(3) ||| EATS(4)))))

--!! channel getsup in within GETSUP
--!! arg i integer within GETSUP
GETSUP(i) = getsup.i -> GETSUP(i)
GETTINGUP = ( GETSUP(0)

|||
(GETSUP(1) ||| (GETSUP(2) ||| (GETSUP(3) ||| GETSUP(4)))) )

ENVIRONMENT_SYNC = {| thinks, sits, eats, getsup |}
ENVIRONMENT = THINKING ||| (SITTING ||| (EATTING ||| GETTINGUP))

-----------
-- TABLE --
-----------

-- ALL PHILOSOPHERS
ALL_PHIL = PHIL(0) ||| (PHIL(1) ||| (PHIL(2) ||| (PHIL(3) ||| PHIL(4))))

-- ALL FORKS
ALL_FORK = FORK(0) ||| (FORK(1) ||| (FORK(2) ||| (FORK(3) ||| FORK(4))))

-- TABLE
TABLE = ALL_PHIL [| PHIL_FORK_SYNC |] ALL_FORK
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---------------------
-- TABLE PROTOTYPE --
---------------------
TABLE_P = ENVIRONMENT [| ENVIRONMENT_SYNC |] TABLE
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Level Crossing

--------------------
-- LEVEL CROSSING --
--------------------

--!! main (CARS ||| TRAINS ||| GATE) [| {|train,car,gate|} |] CONTROL_CAR
---- FOR FDR CHECK, UNCOMMENT LINE BELOW
--MAIN = (CARS ||| TRAINS ||| GATE) [| {|train,car,gate|} |] CONTROL_CAR

---------------
-- DATATYPES --
---------------

datatype LETTER = A | B | C
datatype CAR_REG = consulate | official | L.LETTER
datatype TRAIN_COMPANY = GNER | Virgin
datatype UD = raise | lower
datatype ELA = enter | leave | approach

--------------
-- CHANNELS --
--------------

channel car:ELA.CAR_REG
channel train:ELA.TRAIN_COMPANY
channel gate:UD

----------
-- CARS --
----------
CARS = car.approach!L.A -> car.enter!L.A -> car.leave!L.A ->

car.approach!L.B -> car.enter!L.B -> car.leave!L.B ->
car.approach!L.C -> car.enter!L.C -> car.leave!L.C ->

car.approach!consulate -> car.enter!consulate ->
car.leave!consulate ->

car.approach!official -> car.enter!official ->
car.leave!official -> CARS
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------------
-- TRAINS --
------------
TRAINS = train.approach!GNER -> train.enter!GNER ->

train.leave!GNER -> train.approach!Virgin ->
train.enter!Virgin -> train.leave!Virgin -> TRAINS

----------
-- GATE --
----------
--!! channel gate out within GATE
GATE = gate.lower -> gate.raise -> GATE

-----------------------------
-- CONTROLLER - GATE IS UP --
-----------------------------
--!! channel gate in within CONTROL_CAR
CONTROL_CAR = car.approach?id -> car.enter?id ->

car.leave?id -> CONTROL_TRAIN

--!! channel gate in within CONTROL_TRAIN
CONTROL_TRAIN = train.approach?id -> gate.lower ->

train.enter?id -> train.leave?id ->
gate.raise -> CONTROL_CAR
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