
csp2hc: from CSPM to Handel-C

Current Status

Marcel Oliveira and Jim Woodcock

January 23, 2009

1 Introduction

Our tool, csp2hc, already mechanises the translation of a considerable subset of CSPM to
Handel-C, which includes the following features.

1. SKIP

2. STOP

3. Sequential composition

4. if _ then _ else _

5. Guarded Processes

6. Recursion

7. Prefixing

8. External Choice

9. Internal Choice

10. Concurrency

11. Datatypes

12. Constants

13. Expressions

Although they represent a subset of CSPM, using these constructors, we are already
able to automatically translate many of the classical CSP examples in the literature,
like the examples presented in Appendix ??: the dining philosophers and the level cross-
ing. More importantly, the phase controller of the CMOS can already be automatically
translated using csp2hc. Currently, we are working on the features needed to achieve

1

the automatic translation of the heap model of the CMOS. Ultimately, we aim at the
automatic translation of the whole CMOS.

In what follows we describe the details of our efforts. Section 2 discussed the aspects
involving the current status of csp2hc. These include the conventions and assumptions
made by csp2hc on the source CSPM specification, a list of the CSPM constructors that
are supported by csp2hc, the current restrictions on these constructors, and an outline
of the solutions implemented by the translator. The vast majority of these restrictions
are intended to be removed in the next stages of the project. The solutions for these are
presented as needed in Section 3.

In Section 2.2, we list which restrictions on the CSPM are already being automatically
checked by csp2hc and which of them are not being automatically checked by the tool.

Our tool uses a CSPM parser/type checker that has been implemented by our collab-
orators in UFPE/Brazil. Our efforts created a heavy load of tests that have identified a
couple of errors in this tool. These errors are listed in Section 2.3 and they have already
been reported to the developers of the CSPM parser, who have committed themselves to
fix these bugs.

Our translator needs some extra information from the user as, for instance, the number
of bits that are used to represent integers. These are given by the user to csp2hc in the
form of directives (comments in the source CSPM specification with a special format). In
Section 2.4, we describe the directives that are used by csp2hc.

Our main objective is to fully automate the translation of the CMOS. With this
purpose, we have created three milestones: the phase controller, the heap model, and the
CMOS. In Section 3, we describe the efforts in the translation of these milestones: we
describe the CSPM constructors whose translation are already mechanised, and the ones
whose translation have not yet been mechanised. For those whose translation have not
yet been mechanised, we provide possible solutions for their implementation in Handel-C.

Finally, Section 4 present csp2hc and discuss how it can be used.

2 Current Status

csp2hc uses a a CSPM parser/type checker that has been implemented by our collaborators
in UFPE/Brazil. This parser, with exception of a few constructors in which it presented
some problems, already accepts all the CSPM constructors needed for the full translation
of the CMOS.

The input to csp2hc is a CSPM specification that has already been checked in FDR.
Furthermore, csp2hc considers that none of the Handel-C keywords are present in the
source CSPM. Besides, some further keywords are used by csp2hc and cannot be part of
the input CSPM specification as well. They are:

• clock1

• SYNC

• syncout

2

• syncin

• integer

• integer_offset

• For every possible integer value i:

– i ≥ 0: integer_i_s

– i < 0: integer_neg_i_s

• boolean

• true

• false

• true_set

• false_set

• main

• mainp

• CHANNEL

• INEXISTENT_CHANNEL

• BRANCH

• Starting from the main process, let n be the number of parallel branches. For every
i , such that 0 ≤ i ≤ n: BRANCH_i

• For every type T in the specification (including integer, boolean, BRANCH, and
CHANNEL):

– T_set

– T_nil

– T_card

– T__set_LUT

• bus_in

• bus_out

• OutPort

• For every channel C that is declared as a bus in a directive, we have:

– in_bus_C

3

– out_bus_C

– bus_C_value

– C_n, for every n that is between (inclusive) 1 and the length of the type of
the channel (1 ≤ n ≤length(type(<BUS_NAME>)))

– InBus_C

– OutBus_C

• For every simple datatype value v , v_set

• For every complex datatype value C.v1.v2, where C is the constructor declared as
C.T1.T2

– C_T1_T2_LUT

– C_v1_v2

– C_v1_v2_s

– If any of the values vi is a negative integer, then we have neg_vi instead.

• MUTUAL_REC

• PROGRAM_COUNTER

• KEEP_LOOPING

• FORCED_SYNC_LUT

• FORCED_SYNC_LUT_SEMA

• CURRENT_SYNC_STATUS_LUT

• CURRENT_SYNC_STATUS_LUT_SEMA

• DONE_EVENTS_n, where n is a unique natural number used to avoid variable clashes

• HAS_JOINED_n, where n is a unique natural number used to avoid variable clashes

• Auxiliary macro expression names and arguments

– IS_AVAILABLE

– IS_EMPTY_SET

– SET_UNION

– SET_DIFF

– SET_INTER

– SET_S

– SET_T

– MAY_JOIN

4

– LOCK_VARIABLE

– TRY_JOIN_SEMAPHOR

– JOIN_SEMAPHOR

– LEAVE_SEMAPHOR

– BRANCH_B

– BRANCH_ID

– CHANNEL_C

– BRANCH_SET_S

– NO_WRITER

– HAS_WRITER_LUT

– MULTI_SYNC_READY

– MULTI_SYNC_LUT

– READERS_READY

– IS_SYNC_READY

– BRANCH_MEMBER

– IS_ALREADY

– HAS_JOINED

– SLEEP

– TRY_CONFIRM_READERS

– ARE_READERS_READY

– CONFIRM_READERS

– CONFIRMED

– confirmed_end

– CONFIRM_FINISHED

– WITHDRAW_IN_CONFIRMATION

– WITHDRAW_IN_COMM

– WITHDRAW_IN_FINISHED

– WITHDRAW_SIGNALS

2.1 Translation

In what follows, we list the CSPM constructors that are supported by csp2hc. For each one
of them, we present the restrictions on these constructors, and an outline of the solutions
implemented by the translator.

1. SKIP

5

(a) Restrictions: None

(b) Solution: translates to nothing.

2. STOP

(a) Restrictions: None

(b) Solution: translates to
chan SYNC INEXISTENT_CHANNEL;
INEXISTENT_CHANNEL?syncin

3. Sequential composition

(a) Restrictions: None

(b) Solution: translates to a sequential composition.

4. Guarded processes

(a) Restrictions: None

(b) Solution: g & P translates as if g then P else STOP.

5. Recursion

(a) Simple Recursion

i. Restrictions:
A. Only Tail Recursion
B. No parallel composition in the tail recursion.

Q = c -> (Q [| {| c1 |} |] Q)

ii. Solution: tail recursions are translated to a loop that iterates while a
KEEP_LOOPING variable is true. In each iteration, the loop initially sets
KEEP_LOOPING to false; the tail recursion sets this variable to true. Pos-
sible process arguments are declared as local copies, which are initialised
before the beginning of the loop with the given value and are updated
before the end of each iteration.
For instance, process P(x) = c1 -> P(x+1) is translated as follows.
inline void P1 (integer x){

boolean KEEP_LOOPING;
integer P1_local_x;
P1_local_x = x;
KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
seq{

seq{
c! P1_local_x;
P1_local_x = x + 1;

6

KEEP_LOOPING = true;
}

}
}

}

(b) Mutual Recursion

i. Restrictions:
A. Parallel composition (and interleaving) only in the main process given

in the directive (as described in Section 2.4.3).
ii. Solution: the solution is to transform the whole model into an action sys-

tem like model. First, we declare all the processes parameters as global
variables. Then, we declare a single method parametrised by a process
counter that will represent the whole system. Its body is a loop on a vari-
able KEEP_LOOPING. In each iteration, we check the value of the program
counter and behave accordingly. Possible process arguments are declared
as global copies, which are initialised before each invocation of the mutual
recursion.
For instance, let us consider the following specification:
P1(x) = c!x -> P2(x+1)
P2(x) = c!x -> P1(x-1)

It is translated as follows.
integer P1_local_x, P2_local_x;
inline void MUTUAL_REC(int 1 PROGRAM_COUNTER){

KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
switch(PROGRAM_COUNTER){

case P1 :{
seq{

c! P1_local_x;
P2_local_x = P1_local_x + 1;
PROGRAM_COUNTER = P2;
KEEP_LOOPING = true;

}
break;

}

case P2 :{
seq{

c! P2_local_x;
P1_local_x = P2_local_x - 1;

7

PROGRAM_COUNTER = P1;
KEEP_LOOPING = true;

}
break;

}
}

}
}

6. Prefixing

(a) Restrictions:

i. Synchronisations of the form

channel name[.csp expression]∗[?var name | !csp expression]0..1

where csp expression is as in Section 14a.
ii. Projections are used consistently. For instance, if a channel is used as c.e,

it cannot be used as c!e elsewhere in the specification.

(b) Solution:

i. Communications are translated to Handel-C communications
ii. Simple synchronisations are translated to communications of dumb values.

A directive indicates if the channel is an input or output
iii. Synchronisations c.e are translated to an access to the e-th element of an

array c of channels. For each type T in the system, we declare a constant
T_card that contains the number of element of elements in that type. This
constant is used in the declaration of the array. Besides, signed integers
are cast into unsigned integers.

7. Input/Output Buses

(a) As explained in Section 2.4.6, a channel may be declared as a bus. This indi-
cates that the channel is used as a means from the environment to communicate
with the system.

(b) Solution:

• For every bus, we declare a global constant and a global Handel-C interface.
For example, suppose we have declared integers of 7 bits. For a input bus
read and an output bus write (both declared as type integer in the
CSPMspecification), we have the following declaration.

integer in_bus_read;
interface bus_in(integer bus_read_value) InBus_read() with{

data={
"read_7","read_6","read_5","read_4","read_3","read_2","read_1"}

8

};
integer out_bus_write;
interface bus_out() OutBus_write(integer OutPort=out_bus_write) with{

data={
"write_7","write_6","write_5","write_4","write_3","write_2","write_1"}

};

• Then, we slightly change the use of these channels in the CSPM specifica-
tion. For instance, the translation of an input communication on thus bus
read?n becomes the following code.

in_bus_read=InBus_read.bus_read_value;

• Furthermore, the translation of an output communication on the bus
write!value becomes the following code.

out_bus_write=value;

• The changes applied to the translation to deal with buses has no effects on
the translation of single recursion and mutual recursion. The translation
of forced interleaving and multi-synchronised events also doe not need to
be changed. It, however, could be optimised to avoid unnecessary use of
semaphores on buses.

(c) Restrictions:

i. There can be no projection on buses (i.e read.0);
ii. A bus can only be either input or output, not both;
iii. A bus cannot be used in channel sets;
iv. A bus cannot be offered as a choice in an external choice;
v. A bus must be used within the system;
vi. A bus must have have exactly one type; that is, the declaration of the

channel in the CSPM specification declares exactly one type.

8. External Choice

(a) Restrictions:

i. Only for prefixing processes.
A. No Process call
B. No STOP

C. No SKIP

D. No P;Q

E. No P \ cs

F. No g & P

G. No P ||| Q

H. No P [| CS |] Q

9

I. No P [CS1 || CS2] Q

ii. No two branches in an external choice with an on the input variables of
the same name.

(b) Solution: translate to Handel-C prialt

9. Internal choice

(a) Restrictions: None

(b) Solution: Using another directive, the user can choose the time he wants
internal choices to be carried out. For instance, if we give the directive --!!
int choice at compiletime to csp2hc, the internal choice P |~| Q will be
translated to P();. If, however, runtime is used, the following translation is
given as result.

random(random_var);
if((random_var%2)==0){ P(); } else{ Q(); }

The global variable random var is an integer; it is given to the macro procedure
random that updates its value to a random value. Next, if this new value is
an even number, the process behaves like P; it behaves like Q, otherwise. This
directive is optional: the default value is compiletime.

10. Concurrency

(a) Restrictions:

i. No multi-synchronised channel is offered in an external choice
ii. For every parallel composition, let cs be the channels on which both pro-

cess really synchronise.
A. For every channel c in cs, exactly one of the parallel branches must be

the writer.
c?x -> SKIP [| {| c |} |] c?y -> SKIP and
c!0 -> SKIP [| {| c |} |] c!0 -> SKIP are not deadlock free in
handel-c but they are in CSP. These cases are removed with this re-
striction.

B. No branch can be a reader and a writer to c
c!0 -> c?x -> SKIP [| {| c |} |] c?x -> c?y -> SKIP is not dead-
lock free in handel-c but it is in CSP. The restriction above would not
consider this case; however, this second restriction removes it.

iii. Synchronisation channel sets must be explicit
A. No constants
B. No set functions
C. No productions
D. No set comprehension

10

(b) Solution: The solution can be split into two parts: one for the simple cases
and one for the more complicated cases. First, let us determine what we
consider a complicated case. These cases are the ones that include multi-way
synchronisation (more than two processes taking part in a communication) and
forced interleaved events, which are those events that are in the alphabets of
both processes, but not in the synchronisation channel set. For a sharing par-
allel composition P [| CS |] Q, this is (α(P)∩ α(Q)) \CS; for an alphabetised
parallel composition P [CS1 || CS2] Q, this is α(P)∩α(Q) \CS1∩ CS2; and
finally, for an interleaving P ||| Q, this is α(P) ∩ α(Q).

• Simple cases

If there are no forced interleaved events and no multi-way synchronisation,
we simply translate these into Handel-C parallelism

par{ P(); Q() }

• Further cases

If, however, we do have either case, we must implement a multiple-access
semaphore protocol that controls the access by the branches in a parallel
composition to the channels. In order to use this protocol the translation of
prefixing, external choice and the arguments of the processes are changed.
For instance, in the translation of the CSPM code in:
--!! int_bits 2

datatype ALPHA = a | b
datatype ID = Letter.ALPHA | unknown

-- Abstract parking spot
channel enter, leave

--!! channel enter in within PARKING_SPOT
--!! channel leave in within PARKING_SPOT
PARKING_SPOT = enter -> leave -> PARKING_SPOT

-- Concrete parking spot
channel cash, ticket, change : ID

--!! channel cash in within MACHINE
--!! channel ticket out within MACHINE
--!! channel change out within MACHINE
MACHINE = cash?id -> cash?id -> ticket.id ->

change.id -> MACHINE

--!! channel enter in within CUSTOMER
--!! channel leave in within CUSTOMER
--!! channel cash out within CUSTOMER
--!! channel ticket in within CUSTOMER

11

--!! channel change in within CUSTOMER
--!! arg id ID within CUSTOMER
CUSTOMER(id) =

(enter -> cash!id ->
(ticket.id -> change.id -> SKIP
[] change.id -> ticket.id -> SKIP));

leave -> CUSTOMER(id)

PAID_PARKING_SPOT =
(CUSTOMER(Letter.a)
[| {| cash, ticket, change |} |]
MACHINE) \ {| cash, ticket, change |}

--!! channel enter out within CAR
--!! channel leave out within CAR
CAR = enter -> leave -> CAR

--!! mainp CAR [| {| enter,leave |} |] PAID_PARKING_SPOT

First, we need to identify each one of the branches: we start this iden-
tification from the MAIN process given by the directive (in this case CAR
[| {| enter,leave |} |] PAID PARKING SPOT); we give an identifica-
tion to each one of the leaves in the tree presented in Figure 1 (from
left to right). For instance, the left most leaf, process CAR, is the branch
BRANCH 0. The implementation of the concept of branch reuses the solu-
tion for datatypes we have already presented. Implicitly, csp2hc considers
that we have the following datatype in the specification.
datatype BRANCH = BRANCH_0 | BRANCH_1 | BRANCH_2 | BRANCH_3 | BRANCH_4

In our example, we have the following extra lines of code.
#define BRANCH unsigned int 3
#define BRANCH_0 0
#define BRANCH_1 1
...
#define BRANCH_card 5
#define BRANCH_set unsigned int BRANCH_card
#define BRANCH_4_set 0b10000
...
#define BRANCH_set_nil 0b00000
static BRANCH_set BRANCH__set_LUT[BRANCH_card] = { ... };

During the translation of a parallel branch, csp2hc knows which branch is
being translated and uses its identification to apply the protocol. In every
parallel composition, csp2hc translates the left branch first and, before
translating the right branch, it updates the current branch identification,

12

Figure 1: Identifying the branches

13

which is stored in a local variable BRANCH ID, by incrementing it with the
number of branches identified during the translation of the left branch.
Furthermore, every process has an extra argument: it identifies the branch
in the parallel composition from which it has been invoked. In our example,
we have the following translation for the main process.
void main(){

BRANCH BRANCH_ID;
BRANCH_ID = 0;
par{

{
CAR(BRANCH_ID+0);

};
{

PAID_PARKING_SPOT(BRANCH_ID+1);
}

}
}

We declare the local variable that identifies the current branch in the
translation and initialise it to zero. The system behaves like a paral-
lel composition between processes CAR and PAID PARKING SPOT; they are
parametrised by the branch identification. Because before the translation
of CAR we have not yet translated anything, we use BRANCH ID + 0 as ar-
gument. Nevertheless, this process is a branch; hence, we use BRANCH ID
+ 1 as argument to invoke PAID PARKING SPOT. The translation of pro-
cesses PAID PARKING SPOT and CUSTOMERS though are slightly different as
we can see in the code below.
inline void PAID_PARKING_SPOT(BRANCH BRANCH_ID){

par{
{

CUSTOMERS(BRANCH_ID+0);
};
{

MACHINE(BRANCH_ID+3);
}

}
}
inline void CUSTOMERS(BRANCH BRANCH_ID){

par{
{

CUSTOMER(BRANCH_ID+0,ID_Letter_LUT[a]);
};
{

14

par{
{

CUSTOMER(BRANCH_ID+1,ID_Letter_LUT[b]);
};
{

CUSTOMER(BRANCH_ID+2,unknown);
}

};
}

}
}

In the translation of the first one, the local variable BRANCH ID is in-
cremented by three before being given as argument to MACHINE because
during the translation of CUSTOMERS, csp2hc identifies three branches. In
the translation of CUSTOMERS, the first invocation to CUSTOMER does not in-
crement the local variable BRANCH ID; the following invocations, though,
do increment it. Now that we have correctly identified each one of the
branches that take part in the main behaviour of the system, we need to
control the accesses to the channels.
First, we have some constants that are used to express the possible actions
on channels.
#define ACTION unsigned int 1
#define A_READ 0
#define A_WRITE 1
#define MAX_MULTI_SYNC_SET_card 3

The first one, ACTION is the type of arguments that represent the action of
a branch on a channel. These arguments can assume two values: A_READ or
A_WRITE. Finally, we have a constant that represent the maximum number
of possibilities of synchronisation on any channel. In our case, we have 3
because for every channel we have three possibilities of synchronisation to
happen.
Next, we use a global static constant and a global variable. The former,
FORCED SYNC LUT, is a two-dimensional array that stores the information
about the forced interleaved events, and the later, CURRENT SYNC STATUS LUT,
is a one dimensional array that stores, for each channel, the identification
of the branches that are being allowed to access it. In what follows we
describe how we define both of them.
The static constant FORCED SYNC LUT is an array of arrays of sets of
branches (BRANCH set). The first dimension corresponds to the channels
used in the system, and the second dimension corresponds to the parallel
branches.

static BRANCH_set FORCED_SYNC_LUT[CHANNEL_card][BRANCH_card] = {

15

For every constant channel c that represents the channel c used in the
system and for every constant BRANCH n that represents the n-th parallel
branch, FORCED SYNC LUT[channel c][BRANCH n] is the set of branches
with which the branch n cannot synchronise on c. By way of illustration,
we present below the element of the FORCED SYNC LUT generated from our
example that indicates this information for the channel change (FORCED SYNC LUT[channel change]).
static BRANCH_set FORCED_SYNC_LUT[CHANNEL_card][BRANCH_card] ={

// -----------
// chan_change
// -----------
{

// --------
// BRANCH_0
// --------
BRANCH_set_nil,
// --------
// BRANCH_1
// --------
SET_UNION(BRANCH_2_set,SET_UNION(BRANCH_3_set,BRANCH_set_nil)),
// --------
// BRANCH_2
// --------
SET_UNION(BRANCH_1_set,SET_UNION(BRANCH_3_set,BRANCH_set_nil)),
// --------
// BRANCH_3
// --------
SET_UNION(BRANCH_1_set,SET_UNION(BRANCH_2_set,BRANCH_set_nil)),
// --------
// BRANCH_4
// --------
BRANCH_set_nil}

,

In the code above, the first and last elements are the empty set of branches
BRANCH set nil. This indicates that branches 0 and 4, which correspond
to the processes CAR and MACHINE, respectively (see Figure 1), may syn-
chronise with any other branch on channel change. Nevertheless, branches
1, 2, and 3, which represent each individual CUSTOMER, have mutually ex-
clusive access to this channel. For generalisation, we implement the set
{BRANCH 2, BRANCH 3} as the union of the singletons BRANCH 2 set and
BRANCH 3 set with the empty set of branches.

16

In our example, the processes CUSTOMER cannot synchronise in any event in
their alphabets; and this is the only enforcement needed. For this reason,
since the alphabet of CUSTOMER contains all the channels in the system,
the elements that correspond to the other channels in FORCED SYNC LUT
are identical to the one presented above.

// chan_enter
{ ... } ,
// chan_ticket
{ ... } ,
// chan_leave
{ ... } ,
// chan_cash
{ ... }

};

The dimension of the array of sets of branches CURRENT SYNC STATUS LUT
is the number of channels used in the system. For every constant channel c,
the element CURRENT SYNC STATUS LUT[channel c] is the set of branches
that are currently allowed to access the channel c. Since no branch is
initially allowed to access any channel, every element of this variable is
initially set to zero.
BRANCH_set CURRENT_SYNC_STATUS_LUT[CHANNEL_card] ={

// -----------
// chan_change
// -----------
BRANCH_set_nil,
// ----------
// chan_enter
// ----------
BRANCH_set_nil,
// -----------
// chan_ticket
// -----------
BRANCH_set_nil,
// ----------
// chan_leave
// ----------
BRANCH_set_nil,
// ---------
// chan_cash
// ---------
BRANCH_set_nil};

17

The array HAS_WRITER_LUT[CHANNEL_card] is an array of boolean: for
each channel, it registers if there exists any writer with access to it. Its
dimension is also the number of channels used in the system. Since no
branch is initially allowed to access any channel, every element of this
variable is initially set to false.
boolean HAS_WRITER_LUT[CHANNEL_card] ={

// -----------
// chan_change
// -----------
false,
// ----------
// chan_enter
// ----------
false,
// -----------
// chan_ticket
// -----------
false,
// ----------
// chan_leave
// ----------
false,
// ---------
// chan_cash
// ---------
false};

A last static constant, MULTI SYNC LUT is an array of arrays of sets of
branches (BRANCH set). The first dimension corresponds to the channels
used in the system, and the second dimension corresponds to the maximum
number of parallel branches in the system.
static BRANCH_set MULTI_SYNC_LUT[CHANNEL_card][MAX_MULTI_SYNC_SET_card] ={

For every constant channel c that represents the channel c used in the sys-
tem, MULTI SYNC LUT[channel c][i], is an array of sets of branches: each
element of this array corresponds to a possible synchronisation on c. By
way of illustration, we present below the element of the MULTI SYNC LUT
generated from our example that indicates this information for the channel
change (MULTI SYNC LUT[channel change]).

// -----------
// chan_change
// -----------

18

{
SET_UNION(BRANCH_2_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil)),
SET_UNION(BRANCH_3_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil)),
SET_UNION(BRANCH_1_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil))}

,

In the code above, we indicate that there are three possible synchronisa-
tions on channel c: branches 2 and 4 (CUSTOMER(Letter.b) and MACHINE),
branches 3 and 4 (CUSTOMER(Unknown) and MACHINE), or branches 1 and
4 (CUSTOMER(Letter.a) and MACHINE). In this particular example, we do
not have multi-synchronisation; however, this would be indicated here by
having any set of branches with cardinality higher than 3. The behaviour
of the protocol, however, does not change because of this.
In the same way, we have the definition of MULTI SYNC LUT for the other
channels.

// ----------
// chan_enter
// ----------
{

SET_UNION(BRANCH_0_set,SET_UNION(BRANCH_1_set,BRANCH_set_nil)),
SET_UNION(BRANCH_0_set,SET_UNION(BRANCH_3_set,BRANCH_set_nil)),
SET_UNION(BRANCH_0_set,SET_UNION(BRANCH_2_set,BRANCH_set_nil))}

,
// -----------
// chan_ticket
// -----------
{

SET_UNION(BRANCH_2_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil)),
SET_UNION(BRANCH_3_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil)),
SET_UNION(BRANCH_1_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil))}

,
// ----------
// chan_leave
// ----------
{

SET_UNION(BRANCH_0_set,SET_UNION(BRANCH_1_set,BRANCH_set_nil)),
SET_UNION(BRANCH_0_set,SET_UNION(BRANCH_3_set,BRANCH_set_nil)),
SET_UNION(BRANCH_0_set,SET_UNION(BRANCH_2_set,BRANCH_set_nil))}

,
// ---------
// chan_cash
// ---------
{

SET_UNION(BRANCH_2_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil)),

19

SET_UNION(BRANCH_3_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil)),
SET_UNION(BRANCH_1_set,SET_UNION(BRANCH_4_set,BRANCH_set_nil))}

};

The look-up tables FORCED SYNC LUT and CURRENT SYNC STATUS LUT are
global variables and can be accessed by any part of the code. Never-
theless, concurrent access to them may lead to unexpected behaviours.
Fortunately, Handel-C provides semaphores; we define one semaphore for
each one of these look-up tables.
sema CURRENT_SYNC_STATUS_LUT_SEMA;
sema HAS_WRITER_LUT_SEMA;

Finally, we have an array of Handel-C boolean signals. They behave like
wires: changes to their value last one clock cycle only; their value return
to the original one in the next clock cycle. In our case, we set false as
the original value. The idea is to use these signals as a means of commu-
nication between the readers and the writer if the reader withdraws on a
multi-synchronisation (by setting the element in the array of signals that
corresponds to the channel that is being withdrawn to true.
signal <boolean> WITHDRAW_SIGNALS[CHANNEL_card] ={

// -----------
// chan_change
// -----------
false,
// ----------
// chan_enter
// ----------
false,
// -----------
// chan_ticket
// -----------
false,
// ----------
// chan_leave
// ----------
false,
// ---------
// chan_cash
// ---------
false};

20

The Protocol The basic idea if that, before any communication on a
channel, a process (branch) must join the corresponding semaphore, and
finally, after synchronising on the channel, releases their corresponding
semaphores. For instance, a branch BRANCH ID, reads from channel c, as
follows.
JOIN_SEMAPHOR(BRANCH_ID,chan_c,A_READ);
c? y;
LEAVE_SEMAPHOR(BRANCH_ID,chan_c,A_READ);

If the branch is the writer, the only difference, is that, before actually
writing to the channel, it confirms with the readers that they are actually
willing to read, which means that they don’t have withdrawn (at this point
the branch actually waits until all readers have confirmed.
JOIN_SEMAPHOR(BRANCH_ID,chan_c,A_WRITE);
CONFIRM_READERS(BRANCH_ID,chan_c);
c!v;
LEAVE_SEMAPHOR(BRANCH_ID,chan_c,A_READ);

In what follows, we explain in details the auxiliary functions and macros
that are used in the implementation of the protocol. We will take a
bottom-up approach: starting from the simplest macros and functions
we will build the final functions JOIN SEMAPHOR, CONFIRM READERS, and
LEAVE SEMAPHOR.
Let us start with the macro expressions. The firest one indicates if a branch
can have access to a channel regarding the forced interleaved events.

macro expr IS_AVAILABLE(BRANCH_B,CHANNEL_C) =
(IS_EMPTY_SET(SET_INTER(FORCED_SYNC_LUT[CHANNEL_C][BRANCH_B],

CURRENT_SYNC_STATUS_LUT[CHANNEL_C])));

For us, a branch b can have access to a channel, if there is no branch
with which b may not synchronise on c having access to c. Hence, we
check if the intersection between the set of branches with which b may
not synchronise on c and the set of current channels having access to c is
empty.
The next macro expression checks if there is no writer having access to the
channel. This can be simply done by checking the element in the array
HAS WRITER that corresponds to the given channel as follows.
macro expr NO_WRITER(CHANNEL_C) = (!HAS_WRITER_LUT[CHANNEL_C]);

The macro MULTI SYNC READY returns true if the given set of branches
corresponds to an acceptable synchronisation (including multi-synchronisation)
on the given channel. It does so by checking every possible synchronisation
for the given channel as follows.
macro expr MULTI_SYNC_READY(CHANNEL_C,BRANCH_SET_S) =

(MULTI_SYNC_LUT[CHANNEL_C][0]==BRANCH_SET_S)
||
(MULTI_SYNC_LUT[CHANNEL_C][1]==BRANCH_SET_S)

21

||
(MULTI_SYNC_LUT[CHANNEL_C][2]==BRANCH_SET_S);

The next macro indicates if, by including a given branch, the synchronisa-
tion on a given channel is ready. This is checked by giving a union of the
current branches that have access to the giving channel with the singleton
that contains the given set as argument to MULTI SYNC READY.
macro expr MULTI_SYNC_READY_WITH_ME(WRITER_BRANCH_B,CHANNEL_C) =

MULTI_SYNC_READY(CHANNEL_C,
SET_UNION(CURRENT_SYNC_STATUS_LUT[CHANNEL_C],

BRANCH__set_LUT[WRITER_BRANCH_B]));

As we did for the synchronisation regarding forced interleaving events, we
have a macro expression that indicates if a given branch may have access to
the a given channel to make a given action regarding multi-synchronisation.
macro expr IS_SYNC_READY(BRANCH_B,CHANNEL_C,ACTION_A) =

((ACTION_A==A_READ)
||(ACTION_A==A_WRITE

&& MULTI_SYNC_READY_WITH_ME(BRANCH_B,CHANNEL_C)));

In our protocol, there are only two situations in which this is true: the
branch wants to read from the channel or the branch wants to write and all
readers are ready. This enforces the writer to be the last to have access to a
given channel. Of course, after the writer has joined the channel, it might
be possible that readers withdraw the synchronisation. This, however, is
also dealt by our protocol as we will discuss latter. For the moment, let
us continue with the description of the auxiliary macro expressions.
The set membership for branches is implement by the following macro
expression.
macro expr BRANCH_MEMBER(BRANCH_B,BRANCH_SET_S) =

(SET_UNION(BRANCH__set_LUT[BRANCH_B],BRANCH_SET_S)
==
BRANCH_SET_S);

It is used by the next macro expression, which determines if a given branch
already has access to a given channel.
macro expr IS_ALREADY(BRANCH_B,CHANNEL_C) =

(BRANCH_MEMBER(BRANCH_B,CURRENT_SYNC_STATUS_LUT[CHANNEL_C]));

The macro expression MAY JOIN indicates if a given branch may have access
to a given channel regarding both forced interleaved events and multi-
synchronisation.
macro expr MAY_JOIN(BRANCH_B,CHANNEL_C,ACTION_A) =

((IS_ALREADY(BRANCH_B,CHANNEL_C))
||
(IS_AVAILABLE(BRANCH_B,CHANNEL_C)
&& IS_SYNC_READY(BRANCH_B,CHANNEL_C,ACTION_A)));

22

A branch BRANCH B may only have access to a channel CHANNEL C to per-
form an action ACTION A either if it already has access to the channel, or
if it may have access to the channel regarding both separate concern: forced
interleaved events (IS AVAILABLE) and multi-synchronisation (IS SYNC READY).
Handel-C semaphores can only be accessed via two constructs. The first
one, trysema(s), checks if a semaphore s is already taken. If it is not
taken, it takes this semaphore and returns one; it returns zero otherwise.
The second one, releasesema(s) releases the semaphore s. The following
procedure tries to obtain a semaphore until it succeeds. Since semaphores
cannot be passed directly to functions, we pass them by reference.
inline void LOCK_VARIABLE(sema *sema_S){

while(trysema(*sema_S)==0) delay;
}

The next function, TRY JOIN SEMAPHOR(BRANCH BRANCH B,CHANNEL CHANNEL C,
ACTION ACTION A), tries to give ACTION A access to branch BRANCH B to
channel CHANNEL C. If the branch is entitled to join the channel, it locks
the variables i n order to update them. Then, it verifies if the situation has
not changed during variable locks by checking again. If everything worked
fine, it adds itself to the array that stores the synchronisation current sta-
tus. Furthermore, if it is the writer, it also updates the writers array. In
this case, the return of this function is true. If, however, access was not
granted, it returns false. Before returning, however, the function releases
the semaphores.
inline boolean TRY_JOIN_SEMAPHOR (BRANCH BRANCH_B,

CHANNEL CHANNEL_C,
ACTION ACTION_A){

boolean HAS_JOINED;
if(MAY_JOIN(BRANCH_B,CHANNEL_C,ACTION_A)){

LOCK_VARIABLE(&CURRENT_SYNC_STATUS_LUT_SEMA);
LOCK_VARIABLE(&HAS_WRITER_LUT_SEMA);
if(MAY_JOIN(BRANCH_B,CHANNEL_C,ACTION_A)){

CURRENT_SYNC_STATUS_LUT[CHANNEL_C] =
SET_UNION(CURRENT_SYNC_STATUS_LUT[CHANNEL_C],

BRANCH__set_LUT[BRANCH_B]);
if(ACTION_A==A_WRITE){

HAS_WRITER_LUT[CHANNEL_C] = true;
}
HAS_JOINED = true;

}
else{

HAS_JOINED = false;
}

23

releasesema(CURRENT_SYNC_STATUS_LUT_SEMA);
releasesema(HAS_WRITER_LUT_SEMA);

}
else{

HAS_JOINED = false;
}
return HAS_JOINED;

}

The procedure JOIN SEMAPHOR is used by a branch to obtain access to a
channel. It continually invokes the function TRY JOIN SEMAPHOR while it
returns false.
// ---
// Indicates that a given branch has access to a given channel
// ---
inline void JOIN_SEMAPHOR(BRANCH BRANCH_B,CHANNEL CHANNEL_C,

ACTION ACTION_A){
boolean HAS_JOINED;
HAS_JOINED = TRY_JOIN_SEMAPHOR(BRANCH_B,CHANNEL_C,ACTION_A);
while(!HAS_JOINED){

HAS_JOINED = TRY_JOIN_SEMAPHOR(BRANCH_B,CHANNEL_C,ACTION_A);
delay;

}
}

The next function updates the synchronisation status look-up table re-
moving the branch from the set that stores the branches that currently
have access to that channel. Furthermore, if the branch is the writer, it
also removed from the writers look-up table by setting the corresponding
value to false.
As usual, it locks the semaphores of both look-up tables, changes them
accordingly, and releases their semaphores.
inline void LEAVE_SEMAPHOR(BRANCH BRANCH_B,CHANNEL CHANNEL_C,

ACTION ACTION_A){
LOCK_VARIABLE(&CURRENT_SYNC_STATUS_LUT_SEMA);
LOCK_VARIABLE(&HAS_WRITER_LUT_SEMA);
CURRENT_SYNC_STATUS_LUT[CHANNEL_C] =

SET_DIFF(CURRENT_SYNC_STATUS_LUT[CHANNEL_C],
BRANCH__set_LUT[BRANCH_B]);

if(ACTION_A==A_WRITE){
HAS_WRITER_LUT[CHANNEL_C] = false;

}

24

releasesema(CURRENT_SYNC_STATUS_LUT_SEMA);
releasesema(HAS_WRITER_LUT_SEMA);

}

The function TRY CONFIRM READERS(BRANCH BRANCH B,CHANNEL CHANNEL C)
tries to confirm that the synchronisation on channel CHANNEL C will be
ready if branch BRANCH B joins the synchronisation. As usual, it locks the
used look-up table.
inline boolean TRY_CONFIRM_READERS(BRANCH BRANCH_B,CHANNEL CHANNEL_C){

boolean ARE_READERS_READY;
LOCK_VARIABLE(&CURRENT_SYNC_STATUS_LUT_SEMA);
ARE_READERS_READY = MULTI_SYNC_READY_WITH_ME(BRANCH_B,CHANNEL_C);
releasesema(CURRENT_SYNC_STATUS_LUT_SEMA);
return ARE_READERS_READY;

}

After confirming that the readers are ready, the writer is able to write
to a channel. In some cases, however, a reader might withdraw the syn-
chronisation. This will make the writer wait for the reader that withdrew.
When this reader is willing again to synchronise, the look-up table will be
changed and the writer is be able to write in the next clock cycle. How-
ever, he must wait for the reader that returned to the synchronisation.
For that, we make use of a procedure SLEEP that does nothing but takes
n clock cycles to complete.
inline void SLEEP(unsigned int 4 SLEEP_TIME){

while(SLEEP_TIME > 0){
delay;
SLEEP_TIME--;

}
}

This procedure is used in the last auxiliary procedure, which only termi-
nates when it is confirmed that the synchronisation on a given channel
is ready (provided a given branch joins the synchronisation), and that
there was no withdraw between reading the corresponding look-up ta-
ble and the end of the procedure. This procedure uses a couple of local
variables: CONFIRMED indicates that the procedure should terminate (ini-
tially, it is set to false and the procedure body is a loop on this vari-
able); CONFIRM FINISHED indicates that the procedure has checked if the
synchronisation is ready; WITHDRAW IN CONFIRMATION indicates that dur-
ing the confirmation of the synchronisation status, some branch withdrew
the synchronisation; similarly, we have variables to indicate that with-
draws have happened during the internal communication of the proce-
dure (WITHDRAW IN COMM) or during the procedure was setting CONFIRM FINISHED
to true. All variables are initially set to false on each iteration of the

25

loop.
inline void CONFIRM_READERS(BRANCH BRANCH_B,CHANNEL CHANNEL_C){

boolean CONFIRMED;
boolean CONFIRM_FINISHED;
boolean WITHDRAW_IN_CONFIRMATION;
boolean WITHDRAW_IN_COMM;
boolean WITHDRAW_IN_FINISHED;
chan boolean confirmed_end;

CONFIRMED = false;
while(!CONFIRMED){

CONFIRM_FINISHED = false;
WITHDRAW_IN_CONFIRMATION = false;
WITHDRAW_IN_COMM = false;
WITHDRAW_IN_FINISHED = false;

The main idea here, is that in each clock cycle within the procedure, the
withdraw signal for the given channel is checked. These variables are used
to store if any signal happened. The main behaviour of the procedure is
a parallel composition: one process repeatedly tries to confirm that the
synchronisation is ready. When it manages to do so, it communicates
with the other process via channel confirmed end. In other to check the
withdraw signal during this communication, whcih takes one clock cycle,
it sends the current signal value via the channel.

par{
{

CONFIRMED = TRY_CONFIRM_READERS(BRANCH_B,CHANNEL_C);
while(!CONFIRMED){

CONFIRMED = TRY_CONFIRM_READERS(BRANCH_B,CHANNEL_C);
delay;

};
SLEEP(10);
confirmed_end!WITHDRAW_SIGNALS[CHANNEL_C];

};

The other process, repeatedly waits for the indication from the first process
that the confirmation has happened. At each iteration, if the communi-
cation does not happen, the process simply checks the withdraw signal.
If, however, the communication does happen, we stop the loop by setting
CONFIRM FINISHED to true. Since this assignment takes one clock cycle,
we also need to check the withdraw signal during this clock cycle.

{
while(!CONFIRM_FINISHED){

prialt{
case confirmed_end?WITHDRAW_IN_COMM:{

26

par{
CONFIRM_FINISHED = true;
WITHDRAW_IN_FINISHED =

WITHDRAW_SIGNALS[CHANNEL_C];
}

};
break;
default:{

if(WITHDRAW_SIGNALS[CHANNEL_C]){
WITHDRAW_IN_CONFIRMATION = true;

};
delay;

};
break;

}
}

}
};

Finally, the procedure has actually terminated (CONFIRMED = true) only if
there was no withdraw during confirmation (!WITHDRAW IN CONFIRMATION),
no withdraw during the communication on confirmed end (!WITHDRAW IN COMM),
no withdraw whilst the procedure was setting the variable CONFIRM FINISHED
to true (!WITHDRAW IN FINISHED), and during the return of the func-
tion (by checking the signal again).

CONFIRMED = !WITHDRAW_IN_CONFIRMATION
&& !WITHDRAW_IN_COMM
&& !WITHDRAW_IN_FINISHED
&& !WITHDRAW_SIGNALS[CHANNEL_C];

}
}

Every process must use the procedures JOIN SEMAPHOR, LEAVE SEMAPHOR,
and CONFIRM READERS (if it is the writer) to access a channel.
By way of illustration , we present below the new translation of the process
MACHINE, which is similar to the translation we presented before, but adds
JOIN SEMAPHOR and LEAVE SEMAPHOR before and after, respectively, every
access to a channel c.
inline void MACHINE(BRANCH BRANCH_ID){

boolean KEEP_LOOPING;
KEEP_LOOPING = true;
while(KEEP_LOOPING){

KEEP_LOOPING = false;
seq{

seq{

27

ID id;
JOIN_SEMAPHOR(BRANCH_ID+0,chan_cash,A_READ);
cash? id;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_cash,A_READ);
seq{

JOIN_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_WRITE);
ticket[id]!syncout;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_WRITE);
seq{

JOIN_SEMAPHOR(BRANCH_ID+0,chan_change,A_WRITE);
change[id]!syncout;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_WRITE);
KEEP_LOOPING = true;

};
};

}
}

}
}

The confirmation of the status of the synchronisation before writing to a
channel (CONFIRM READERS) is only needed for multi-synchronised chan-
nels. In this particular example, we do not have multi-synchronisation;
hence, no channel is multi-synchronised. That is why we do not have this
confirmation before writing to channels ticket and change. If this were
the case, we would have the following code instead (supposing a multi-
synchronisation on ticket, but not on change).

...
JOIN_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_WRITE);
CONFIRM_READERS(BRANCH_ID+0,chan_ticket);
ticket[id]!syncout;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_WRITE);
seq{

JOIN_SEMAPHOR(BRANCH_ID+0,chan_change,A_WRITE);
change[id]!syncout;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_WRITE);

...

The changes in the translation of process CAR and the part of the trans-
lation of process CUSTOMER are very similar. Nevertheless, the translation
of the external choice is considerably changed. The reason is that before
offering any channel in an prialt statement, the branches need to request
access to them. Our protocol gradually requests access to each one of the
channels and offers only those channels who accesses have been granted.

28

Afterwards, the branches also need to indicate that they no longer need
to access the channels.
Our solution uses two auxiliary local variables. The first one, DONE EVENTS 0,
is a channel set that stores any events that have already taken place in
the external choice; hence, if this set is empty, no events have happened
and we must still offer an external choice. The second one, HAS JOINED 0
is an array of boolean whose length is the number of channels used in
the system. For every channel c, HAS JOINED 0[chan c] indicates if this
branch has been allowed to access the channel c, or not. In order to avoid
variable name clashes in nested external choices, we index these variable
with an unique identifier (0 in this example).
CHANNEL_set DONE_EVENTS_0;
boolean HAS_JOINED_0[CHANNEL_card];

Initially, no events have happened and no permission has been given to
access any channel. Hence, the set of done events is empty and every
element in the array HAS JOINED 0 is false.
DONE_EVENTS_0 = CHANNEL_set_nil;
HAS_JOINED_0[chan_cash] = false;
HAS_JOINED_0[chan_leave] = false;
HAS_JOINED_0[chan_ticket] = false;
HAS_JOINED_0[chan_enter] = false;
HAS_JOINED_0[chan_change] = false;

In our example we have the choice ticket.id -> ... [] change.id
-> This external choice is implemented as follows. For each channel
offered in the external choice, ticket and change, the branch requests
access to that channel and then it behaves like a loop that stops if any
event happens or the access to that channel has been granted. In the end
of each iteration, the branch request access to the channel again. The first
channel in the choice is ticket: the branch request access to it and then
starts a loop that stops only if another event happens during the loop or
if the access to ticket is granted to this branch.
HAS_JOINED_0[chan_ticket] = TRY_JOIN_SEMAPHOR(BRANCH_ID,chan_ticket);
while(IS_EMPTY_SET(DONE_EVENTS_0) && !HAS_JOINED_0[chan_ticket]){

// begin body of iteration
...
// end body of iteration
HAS_JOINED_0[chan_ticket] = TRY_JOIN_SEMAPHOR(BRANCH_ID,chan_ticket);

}
// begin loop for chan_change
...
// end loop for chan_change

29

In the body of the iteration, the branch sequentially requests access to ev-
ery other channel in the choice; this creates a (possibly nested) alternation
whose body is a prialt statement that offers only those channels which
the branch has been allowed to access. The next channel in our example
is change; hence, the branch need to request access to it.

// begin body of iteration
HAS_JOINED_0[chan_change] = TRY_JOIN_SEMAPHOR(BRANCH_ID,chan_change);

Next, since we do not have other channels being offered, we have the
alternation. If the requested access to the channel change has not been
granted, this branch has access to no channel yet and the prialt statement
only delays (default case). Nevertheless, if the access to change was
granted, this branch has access only to this channel which is offered in the
prialt statement. If any concurrent process is willing to communicate on
this channel, the communication happens; this updates the set of events
that happened causing the loop to stop and indicates to the protocol that
this branch is no longer accessing the channel. If, however, there is no
process willing to communicate on change, the default case, a delay,
takes place.

if(!HAS_JOINED_0[chan_change]){
prialt{

default:delay;
break;

}
}
else{

prialt{
case change[CUSTOMER_local_id]?syncin :{

DONE_EVENTS_0 = SET_UNION(DONE_EVENTS_0,chan_change_set);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);
seq{

JOIN_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);
ticket[CUSTOMER_local_id]?syncin;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);

}
};
break;
default:delay;
break;

}
}
HAS_JOINED_0[chan_ticket] =

30

TRY_JOIN_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);
// end body of iteration

This loop may end either because an event happened or because the access
to the channel change has been granted.
The initialisation and the condition of the next loop, which relates to the
channel change is very similar to the previous loop.
// begin loop for chan_change
HAS_JOINED_0[chan_change] = TRY_JOIN_SEMAPHOR(BRANCH_ID,chan_change);
while(IS_EMPTY_SET(DONE_EVENTS_0) && !HAS_JOINED_0[chan_change]){

Nevertheless, there are no other channels in the choice; hence, there is no
alternation but only a choice that offers the only channel to which the
access has been granted so far, ticket, and the default delay.
prialt{

case ticket[CUSTOMER_local_id]?syncin :{
DONE_EVENTS_0 = SET_UNION(DONE_EVENTS_0,chan_ticket_set);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);
seq{

JOIN_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);
change[CUSTOMER_local_id]?syncin;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);

}
};
break;
default:delay;
break;

}
HAS_JOINED_0[chan_change] =

TRY_JOIN_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);
// end loop for chan_change

Once again, this loop may end either because an event happened or because
the access to the channel change has been granted. If the previous loops
did not stop their execution because an event happened, then an offer to
all channel in the choice must be made; however, it must only be made if
no events in the choice happened before. After the choice has been made,
the branch must release all the channels in the choice.
if(IS_EMPTY_SET(DONE_EVENTS_0)){

prialt{
case ticket[CUSTOMER_local_id]?syncin :{

DONE_EVENTS_0 = SET_UNION(DONE_EVENTS_0,chan_ticket_set);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);

31

seq{
JOIN_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);
change[CUSTOMER_local_id]?syncin;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);

}
};
break;
case change[CUSTOMER_local_id]?syncin :{

DONE_EVENTS_0 = SET_UNION(DONE_EVENTS_0,chan_change_set);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);
seq{

JOIN_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);
ticket[CUSTOMER_local_id]?syncin;
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);

}
};
break;

}
}

This concludes the translation of the external choice in our example. There
is, however, a small further change that must be made in the presence of
multi-synchronisation. Immediately after the choice has been made, any
with draws on multi-synchronised channels must be indicated. This is done
by setting the corresponding withdraw channel to true. For example, if
the channel change were multi-synchronised, the choice for ticket in the
code above would be as follows.

...
case ticket[CUSTOMER_local_id]?syncin :{

WITHDRAW_SIGNALS[chan_change] = true;
DONE_EVENTS_0 = SET_UNION(DONE_EVENTS_0,chan_ticket_set);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_ticket,A_READ);
LEAVE_SEMAPHOR(BRANCH_ID+0,chan_change,A_READ);

In cases where more the one signal must be sent, this is done in parallel.
Any changes to this protocol might reflect the following translation.
– Events
– External choice
– Parallel Compositon
– Mutual Recursion
– Tail Recursion

32

One further possible solution would be to implement multi-synchronisation
using a protocol that uses a centralised controller like the one presented
in my PhD thesis. However, during tests, we found out that this would
increment a lot the size of the code. We have made a prototype of the
simplest version of the protocol in which we do not have multi-synchronised
events on external choices. For this simplest case, I collected some data
that might support the case of not translating external choice I mentioned
in the previous e-mail.
If we had multi-synchronisation support direct in the Handel-C language,
the compilation of a simple program that has three processes (one that
writes on a channel c and two that read from it) would lead to:
– 336 NAND Gates (32 Flip-Flops) Execution time (1 clock-cycle)

By implementing Jim’s protocol for a multi-synchronisation between the
same three processes we would have:
– 5541 NAND Gates (339 Flip-Flops) Execution time (81 clock-cycle)

Our protocol for a multi-synchronisation between the same three processes
we have:
– 12915 NAND Gates (573 Flip-Flops) Execution time (46 clock-cycle)

We must emphasise that our protocol does take into account external
choice on multi-synchronised channels, and that is why we have a larger
result. We, however, are much faster than the old protocol.

11. Hiding

(a) Restrictions: In order to ignore the hiding P \ cs the following conditions
must be satisfied:

i. For every channel c ∈ cs that is the alphabet of P we must guarantee that
there exists a communication on c between two parallel branches in P . For
this, we consider the hiding only of those channels that are in both cs and
in the alphabet of P and build a stack that stores the hidden channels that
must be considered in nested hiding (in the following, call these CCS).
A. For every parallel composition P [| sync |]Q , we have that:

S1 = (Visible(P) ∩Written(P)) ∩ sync ∩ (Visible(Q) ∩ Read(Q))
S2 = (Visible(Q) ∩Written(Q)) ∩ sync ∩ (Visible(P) ∩ Read(P))
If CCS ⊆ S1 ∪ S2 the all right (ignore the hiding on CCS in the
remaining analysis); otherwise, we have an error.

B. For every parallel composition P [| sync |]Q , increment a parallelism
counter PC . If we find an event on c: if c ∈ CCS ∧ PC ≤ 0 then we
have an error.

C. In order to avoid the insertion of communication that should not hap-
pen in the specification, for every composition P |[sync]|Q :
Hidden(P) ∩ sync ∩Alpha(Q)
Hidden(Q) ∩ sync ∩Alpha(P)

33

(b) Solution: Simply ignore

12. Datatypes

(a) Restrictions: No mutually recursive datatypes

(b) Simple datatypes

i. Restrictions: None
ii. Solution: the type is declared as an unsigned int i, where i is the

number of bits need to represent the cardinality of the type. Each el-
ement of the datatype corresponds to an integer value (starting from
0). We also declare the cardinality of the type. By way of illustration,
datatype Alpha = a | b is translated as follows.
#define Alpha unsigned int 1
#define b 0
#define a 1
#define Alpha_card 2

(c) Complex datatypes

i. Restrictions: None
ii. Solution: constructors are seen as functions. For each element in the

domain of the constructor there exists a corresponding value in the enu-
meration that corresponds to the datatype. For each possible constructor
in the system, create a lookup table that, given the values of the domain
of the constructor, returns the corresponding value in the enumeration of
the datatype. For instance, let us consider the following datatype:
datatype Char = Letter.Alpha | Number.Int

The translation of this datatype is presented below:
#define Char unsigned int 3
#define Number_neg_1 0
#define Number_neg_2 1
#define Number_1 2
#define Number_0 3
#define Letter_a 4
#define Letter_b 5
#define Char_card 6 static Char
Char_Number_LUT[integer_card] ={

Number_0 ,Number_1 ,Number_neg_2 ,Number_neg_1};
static Char Char_Letter_LUT[Alpha_card] ={

Letter_b ,Letter_a};

(d) Int

34

i. Restrictions: None
ii. Solution: Declare a constant integer that represents the integer within

the Handel-C code as an int of n bits, where n is given as a directive and
represents the number of bits in the representation of integers within the
system.

(e) Bool

i. Restrictions: None
ii. Solution: Declare the constants true as 1 and false as 0, and declare

boolean as unsigned int 1

(f) Sets

i. Set expressions can be used in constant and function definitions, and as
processes arguments.

ii. Set expressions can also be used in channel declaration and datatype dec-
larations.

iii. Restrictions:
A. Sets cannot be used in a channel communication.
B. Sets of sets are not accepted neither as a type nor as a expression.

iv. Solution: we use a bit presentation for sets. For every type T in the
system we declare a constant T_set unsigned int T_card; furthermore,
for every element e, we declare a singleton set e_s; finally, we declare the
empty set T_nil_s. For instance, for datatype Alpha = a | b:
#define Alpha_set unsigned int Alpha_card
#define a_s 0b10
#define b_s 0b01
#define Alpha_nil_s 0b00

We also declare a lookup table M_sets_LUT that that returns singleton sets
for every possible value in the system. When reading elements of a set,
each element e is translated to M[e]; we make the bitwise logical or of the
translation of every element.

13. Constants

(a) Restrictions: None

(b) Solution: translate to a Handel-C macro expression

14. Expressions

35

(a) Restrictions: just in the following syntax

csp expression ::= logical expression
| math expression
| rel expression
| set expression
| datatype member

logical expression ::= true | false
| logical expression and logical expression
| logical expression or logical expression
| not logical expression
| if logical expression then csp expression else csp expression

math expression ::= [0 . . 9]+1

| -math expression
| math expression +math expression
| math expression -math expression
| math expression *math expression
| math expression /math expression
| math expression %math expression

rel expression ::= math expression ==math expression
| math expression !=math expression
| math expression >math expression
| math expression >=math expression
| math expression <math expression
| math expression <=math expression

set expression ::= set display
| union(set expression , set expression)
| inter(set expression , set expression)
| diff(set expression , set expression)

set display ::= {set members}
set members ::= set member

| set member , set members
set member ::= math expression

| logical expression
| constant
| datatype member

(b) Solution: translate to the corresponding Handel-C expression

15. if _ then _ else _

(a) Restrictions: None

(b) Solution: Use Handel-C’s if (_) { _ } else { _ }.

36

2.2 Restrictions Verification

csp2hc is able to automatically verify most of the restrictions currently imposed on the
accepted constructors. This means that if any of these restrictions is not satisfied by the
input CSPM, csp2hc indicates the error to the user. The verified restrictions are:

• No non-tail recursive processes (5(a)iA)

• No parallel composition in a tail recursion (5(a)iB)

• Parallel composition on mutually recursive processes only in the main process (5(b)iA)

• Accepted prefixing formats (6(a)i)

• Consistent use of channel projections (6(a)ii)

• There can be no projection on buses (7(c)i)

• A bus can only be either input or output, not both (7(c)ii)

• A bus cannot be used in channel sets (7(c)iii)

• A bus cannot be offered as a choice in an external choice (7(c)iv)

• A bus must be used within the system (7(c)v)

• A bus must have have exactly one type; that is, the declaration of the channel in
the CSPM specification declares exactly one type (7(c)vi)

• External choice only between prefixing processes (8(a)i)

• No two branches in an external choice with an input variables of the same name (8(a)ii)

• No multi-synchronised channel is offered in an external choice 10(a)i

• Numbers of readers and writers on a synchronisation 10(a)ii

• Explicit synchronisation channel sets 10(a)iii

• Conditions for ignoring the hiding 11a

• No mutually recursive datatypes (12a)

• No sets are communicated via a channel communication 12(f)iiiA

• Sets of sets are not accepted neither as a type nor as a expression 12(f)iiiB

• Unsupported CSPM constructors

• No keyword present in the CSPM specification

• Syntax of expressions (14a)

37

2.3 Identified Errors in the Parser/Type Checker

1. Não permite comentários durante definição

channel c:Int

P1 =
-- Se for isto
if true then (c!0 -> SKIP)
-- senao
else (c!1 -> SKIP)

2.4 Directives

In order to be able to translate the source CSPM code, our translator needs some extra
information from the user. These are called directives, and are input in the form of
comments in the source CSPM specification with a special format. This format is a line
commented as follows:

--!! DIRECTIVE

In what follows we discuss the current directives used by csp2hc.

2.4.1 Input and Output Channels

This directive is used to give to csp2hc the indication that a channel, which is not explicitly
used as an input or as an output, is either an input or an output.

• Format: --!! channel channel name [in , out]1 within process name

• Mandatory: for every channel c used as an synchronisation event anywhere in the
system

For instance, in the following input:

--!! channel c in within P
P = c -> SKIP

The directive indicates that c is an input channel in process P.

2.4.2 Argument type

This directive is used to give to csp2hc the type of each of the arguments of a parametrised
process.

• Format: --!! arg variable name handelc type within process name

• Mandatory: for every process argument

38

For instance, in the following input:

--!! arg x integer within P
--!! arg y Alpha within P
P(x,y) = c.x!y -> SKIP

The directive indicates that the types of arguments x and y of P are Handel-C’s integer
and Alpha, respectively.

2.4.3 Main Process

This directive is used to give to csp2hc the main process, which represents the main
behaviour of the system.

• Format: --!! mainp csp process expression

• Optional: Default is SKIP

For instance, in the following input:

--!! mainp P [| {| c |} |] Q

--!! channel c in within P
P = c -> SKIP

--!! channel c in within Q
Q = c -> SKIP

The directive indicates that system behaves like the parallel composition of P and Q.
Multiple lines are accepted. The example above could have been written as follows.

--!! mainp P
--!! [| {| c |} |]
--!! Q

2.4.4 Number of bits for integers

This directive is used to give to csp2hc the number of bits used to represented integer
number in the system.

• Format: --!! int_bits [1 . . 9]+1[0 . . 9]∗

• Optional: Default is 1

For instance, in the following input:

--!! int_bits 2

The directive indicates that integers numbers in the system are those signed integer
number that can be represented using two bits, thus -2, -1, 0, and 1 are valid integer
numbers within this system.

39

Bit 1 Bit 0 Signed Number Unsigned Number
0 0 0 0
0 1 1 1
1 0 -2 2
1 1 -1 3

Table 1: Unsigned and Signed Integers

Warning The number of bits declared by this directive must be sufficient to include the
evaluation of all integer expressions within the specification. Otherwise, this inconsistency
generates the following problem in the generated code. As previously described, if we
declare integers to be of 2 bits, we are considering -2, -1, 0, and 1 as the possible values
for integers in the specifications. If, however, in some point of the specification the values
2 and 3 are used, the Handel-C compiler accepts the generated code, but it interprets
these values as -2 and -1, respectively. So, the specification of a parallel composition
of the events c.-2 and c.2 does not synchronise, but the generated Handel-C code will
synchronise. Although the Handel-C compiler should not accept such behaviour, the
table 1 gives an insight why such behaviour happens: when unsigned, the numbers 2 and
3 have the same bitwise representation as the signed numbers -2 and -1, respectively.

2.4.5 Type of Sets

Type inferencing is not implemented. For this reason, csp2hc needs a directive that
indicates the type of empty sets. Currently, this is given for each process.

• Format: --!! set_of handelc type within [process name | datatype name | con-
stant name]

• Mandatory: for every set used in the system

For instance, in the following input:

--!! set_of integer within P
P = c!{1} -> SKIP

The directive indicates that set within P is a set of integers.

2.4.6 System Input/Output (Buses)

The input and output of the overall system is made via Handel-C buses. For that, we
must declare that the channel is a bus. This is made using the directive bus.

• Format: --!! bus channel name

• Optional

For instance, in the following input:

40

--!! bus read

The directive indicates that channel read is a bus. The translator automatically inferences
the channel type from the CSPM specification.

3 Translating CMOS

The final objective of the project is to automatically translate the whole of the CMOS
specification; however, due to the complexity of the CMOS, we have drawn three mile-
stones for the project: the phase controller, the heap model, and the CMOS. In what
follows, we indicate for each of these milestones, the constructors whose translation are
already mechanised, and the ones whose translation have not yet been mechanised. For
those whose translation have not yet been mechanised, we provide possible solutions for
their implementation in Handel-C.

3.1 Phase Controller

The constructors needed for the translation of the phase controller are:

1. Mutual Recursion (Requirement 5b)

2. Prefixing (Requirement 6)

3. External choice (Requirement 8)

4. Simple datatypes (Requirement 12b)

The current version of csp2hc is already able to automatically translate the phase con-
troller.

3.2 Heap Model

The current version of csp2hc is already able to automatically translate part of the con-
structors used in the heap model. These constructors are:

1. STOP (Requirement 2)

2. Mutual recursion (Requirement 5b)

3. Prefixing (Requirement 6)

4. External choice (Requirement 8)

5. Simple datatype (Requirement 12b)

6. Int (Requirement 12d)

7. Bool (Requirement 12e)

41

8. Constants (Requirement 13)

For timing restrictions only, the translation of the following constructors are not yet
mechanised.

1. Sets can be given to datatype constructors

2. Boolean guards can take part in the external choice

3. Set expressions

(a) Sets as channel types

(b) Sets in communications

(c) Sets as arguments

(d) Set comprehension

(e) Integer ranges

(f) card

(g) member

(h) set

(i) pick

4. Declaration of nametype

5. let _ within _

6. Constrained inputs

7. Pattern matching

8. Sequences expressions

(a) Sequences Display

(b) Sequences concatenation

(c) Seq

9. Tuples expressions

In what follows we discuss the solutions that will be implemented for each of these con-
structors.

42

Solutions

1. Sets can be given to datatype constructors

(a) Restrictions: None. It removes restriction ??

(b) Solution: Since this specification has already been checked by FDR, we can
use the maximal type of the set instead of the set itself. For this, we need
to infer the type of the set; the types of empty sets need to be given via a
directive.

2. Boolean guards can take part in the external choice

(a) Restrictions: None. It relaxes restriction 8(a)i

(b) Solution: Use the following transformation before translation

(g & P) [] Q = if g then (P [] Q) else Q

3. Set expressions

(a) Sets as channel types

i. Restrictions: None. It removes restrictions ??
ii. Solution:Since this specification has already been checked by FDR, we

can use the maximal type of the set instead of the set itself. For this, we
need to infer the type of the set; the types of empty sets need to be given
via a directive.

(b) Sets in synchronisation channel set.

i. Restrictions: None.
ii. Solution: Sets are the bitwise or of the corresponding singleton sets (in

the lookup table) of the elements.

(c) Sets in communications

i. Restrictions: None. It removes restrictions 12(f)iiiA
ii. Solution: Sets are the bitwise or of the corresponding singleton sets (in

the lookup table) of the elements.

(d) Set comprehension

i. Restrictions: None
ii. Solution: Create a library in Handel-C that allows the translation of such

constructions

(e) Integer ranges

i. Restrictions: None
ii. Solution: Create a bitwise or of every integer from the minimum to the

maximum value.

(f) card

43

i. Restrictions: None
ii. Solution: Create a lookup table containing 0 and 1.

static integer card_LUT[2] = {0 , 1};

Declare the following macro, where n is the maximum integer value, based
on the given directive.
macro expr card(b) = (LUT[b[0]] + LUT[b[1]] + ... + LUT[b[n]]);

(g) Union

i. Restrictions: None
ii. Solution: Bitwise or of all the elements, which are themselves sets.

(h) member

i. Restrictions: None
ii. Solution: First, for every type, there will be a lookup table that returns

the singleton set that contain each one of the elements in that type. For
instance, for the booleans we have:
static boolean_set singleton_boolean_sets_LUT[boolean_card] ={

true_s, false_s
};

For the integers (i.e. 2 bits integers), the lookup table will look like this:
static integer_set singleton_integer_sets_LUT[integer_card] ={

integer_0_s, integer_1_s,
integer_neg_2_s, integer_neg_1_s

};

Then, the set membership will be given by the following macro expression:
macro expr member(e,s) =

((singleton_integer_sets_LUT[(unsigned)e] | s) == s);

(i) set

i. Restrictions: None
ii. Solution: returns the bitwise or of all the elements. For instance, set([-1,0,1,2])

is
singleton_integer_sets_LUT[(unsigned)-1] |
singleton_integer_sets_LUT[(unsigned)0] |
singleton_integer_sets_LUT[(unsigned)1] |
singleton_integer_sets_LUT[(unsigned)2]

(j) pick

44

i. Restrictions: None
ii. Solution: we illustrate our solution with a set of a type with cardinality

eight. These are the possible singleton sets b, and the binary representation
of the element x of the singleton set.

b7 b6 b5 b4 b3 b2 b1 b0 x2 x1 x0

1 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0

From this table, we notice that we actually have a pattern in which,
pick(s) = x[2] @ x[1] @ x[0], where xi =

∨{bj | xi = 1 in binary
representation of j}. In our example, we have that:
x[2] = b[7] || b[6] || b[5] || b[4]
x[1] = b[7] || b[6] || b[3] || b[2]
x[0] = b[7] || b[5] || b[3] || b[1]

Thus, pick(0b01000000) = 0b110 = 6

4. Declaration of functions

(a) Restrictions: None

(b) Solution: Declare as macro expressions

5. Declaration of nametype

(a) Restrictions: None

(b) Solution: Use Handel-C’s typedef.

6. let _ within _

(a) Restrictions: None

(b) Solution: Declare one global macro for each of the local variables in the order
they appear

7. Constrained inputs

(a) Restrictions: None

(b) Solution: two solutions have already been considered. They, however, need
further improvements in order to achieve a more general solution.

45

i. Provided we have only one-to-one communications, once we find a
constrained input in the program tree, we have to go back up to the first
parallel composition and do the following transformation from there.
(c!e -> Q [] i_l -> R)
[| {| c |} |]
(c?x:S -> P(x) [] i_r -> T)
=
((try!e -> (c!e -> Q [] i_l -> R))
[| {| c , try |} |]
(try?x -> if member(x,S) then c?x -> P(x) [] i_r -> T

else i_r -> T)) \ {| try |}

Notice that we consider try to be a fresh channel name and y to be a
fresh variable name within the protocol. Otherwise we index their names
with the first integers n and m, such that try_n and y_m are fresh names
within the system. However, if this parallel composition is in parallel
with another action, as the one below
c?x -> V [] i_m -> W

It may the case where the whole parallel composition in CSP allows c
to happen; if member(e,S). However, in Handel-C this may not happen
because of the clock. It may the case in which some of the interruption
events i_x happens in the clock cycle inserted by the try event; this will
cause the event c not to be allowed to happen.

ii. Provided the expression e is in terms only of global variables (pa-
rameters are NOT global), then we already have the value available in
both sides; only the communication is needed.
(c!e -> Q [] i_l -> R)
[| {| c |} |]
(c?x:S -> P(x) [] i_r -> T)
=
(c!e -> Q [] i_l -> R)
[| {| c |} |]
(if member(e,S) then c?x -> P(x) [] i_r -> T
else i_r -> T)

8. Pattern matching

(a) Restrictions: The whole solution is equivalent to writing a functional lan-
guage compiler. Just the pattern matching used in the CMOS will be accepted.

(b) Solution:

i. For c?_, replace _ by a fresh new name

46

ii. For let (S,_,M,V) = E within P, translate it as
let S = E.1, M = E.3, V = E.4 within P

iii. Remaining must be refined

9. Sequences

(a) Sequences Display

i. Restrictions: None
ii. Solution: Sequences can be represented as arrays with a high water mark,

using struct. A directive must be given in order to establish the maximum
size of the array. So, for instance, if the maximum size of the sequences is
said to be six, the sequence [1,2,3] is represented as
[_,_,_,(1),2,3], with the high water mark set to 3 (we denote the high
water mark by putting the element on which the mark is between paren-
thesis. Furthermore, we write _ when the value can be any value).

(b) Sequences concatenation

i. Restrictions: None
ii. Solution: simply introduce the elements of the left-hand side sequence to

the right hand side array as follows.

[1,2] ^ [4,5,6] [Representation of sequences]

= [_,_,_,_,(1),2] ^ [_,_,_,_,(4),5,6] [Calculation]

= [_,_,_,_,(1),_] ^ [_,_,_,(2),4,5,6] [Calculation]

= [_,_,_,_,_,_] ^ [_,_,(1),2,4,5,6] [Base case]

= [_,_,(1),2,4,5,6]

(c) Seq

i. Restrictions: None
ii. Solution: as we have a maximum number of elements for the sequences,

the sets of sequences is not infinite as in the CSP. In order to reuse the al-
ready existing translation strategies, we declare a datatype whose elements
are all the possible sequences and translate this datatype. For instance,
suppose we have three for the maximum length of the sequences. In this
case, Seq(Bool) will be translated as the following datatype:
datatype SEQ_Bool ==

SEQ_Bool_empty
| SEQ_Bool_true | SEQ_Bool_false
| SEQ_Bool_true_true | SEQ_Bool_true_false
| SEQ_Bool_false_true | SEQ_Bool_false_false

A lookup table has also to be provided in order to construct the elements
of this type.

47

static SEQ_Bool SEQ_Bool_LUT[7] =
{[_,_] ,
[_,true], [_,false],
[true,true], [true,false], [false,true], [false,false]};

10. Tuples

(a) Tuples Display

i. Restrictions: None
ii. Solution: Tuples can be translated using struct.

3.3 CMOS

The current version of csp2hc is already able to automatically translate part of the con-
structors used in the CMOS. These constructors are:

1. SKIP (Requirement 1)

2. STOP (Requirement 2)

3. Sequential Composition (Requirement 3)

4. Recursion (Requirement 5)

5. Prefixing (Requirement 6)

6. External choice (Requirement 8)

7. Concurrency (Requirement 10)

8. Datatypes (Requirement 12)

9. Constants (Requirement 13)

For timing restrictions only, besides those discussed in Section 3.2 the translation of
the following constructors are not yet mechanised.

1. Channel sets

2. Renaming

(a) Non-relational Renaming

(b) Relational Renaming

3. include

4. chase

48

5. Indexed sequence

6. Indexed parallelism

7. Replicated choices

8. module

9. Sequence comprehension

In what follows we discuss the solutions that will be implemented for each of these
constructors.

1. Channel sets

(a) Restrictions: None

(b) Solution: as for requirement 8c, we will translate a datatype that contains all
the possible channels within the system. For instance, for a system containing
the following channels

channel b
channel c:Int

and assuming two bits integers, we have the following datatype.

CHANNELS == CHANNEL_b
| CHANNEL_c_neg_2 | CHANNEL_c_neg_1
| CHANNEL_c_0 | CHANNEL_c_1

2. Renaming

(a) Non-relational Renaming

i. Restrictions: None
ii. Solution: By replacing as the following example.

P = Q[a <- b]

• Get the body of Q
• Replace a by b (let’s call this NewQ in this example)
• Translate P = NewQ

(b) Relational Renaming

i. Restrictions: to be analysed
ii. Solution: to be analysed

3. include

49

(a) Restrictions: None

(b) Solution: Append files before parsing.

4. chase

(a) Restrictions:

(b) Solution: Provided we have no use of the internal choice operator, the
only τ events are generated by hiding. In this case, every time we find a hiding
P \ cs in the tree, we analyse P: every external choice in P must be rewritten
such that any initial channel in the choice that is hidden must come first in
the choice. For instance:

((a -> P) [] (b -> Q)) \ {| b |}

must be rewritten as

((b -> Q) [] (a -> P)) \ {| b |}

Since we use PRIALT to implement choice, b will be given priority, which in the
end, means that we are given priority to the τ event.

5. Indexed sequence

(a) Restrictions: Only closed range numerical indexes for indexed sequences

(b) Solution: For every basic datatype d within the model there will be a func-
tion mapping d : d → N.

6. Indexed parallelism

(a) Restrictions: Only closed range numerical indexes for indexed parallel

(b) Solution: The same as 5

7. Replicated choices

(a) Restrictions: Only closed range numerical indexes for replicated choices

(b) Solution: translate the expansion of the replicated choice

8. module

(a) Restrictions: Only closed range numerical indexes for replicated choices

(b) Solution: flatten the whole specification before translation, renaming the mod-
ule components in order to avoid name clashes.

9. Sequence comprehension

(a) Restrictions: None

50

(b) Solution: Create a library in Handel-C that allows the translation of such
constructions

Once the translation of all these constructors are implemented the translation of the
CMOS into Handel-C will be fully automated. Besides, the vast majority of the CSP
constructs will have been translated and, as such, a large number of CSPM specifications
will be automatically translated into Handel-C.

4 Using csp2hc

In order to execute csp2hc, simply execute the file csp2hc.bat. The JVM used must be
of version 1.5.0_06 or higher. The interface is very simple and presented in Figure 2: it is
composed, basically, by a log window, in which all the stages of the translation are logged.
In order to use the translator, simply open the CSP file (.csp) you want to translate and,
if the translation is successful, save the result in a Handel-C (.hcc) file; the user is then
given the choice of translating another file. If, however, the translation is not successful,
an error message is given, and the reason for the error is shown in the log window. The
user is given the choice of correcting the file and trying to translate it again. In order to
finish the execution of the tool, simply click close in the log window.

In the future, the interface could be incremented. For instance, it could have three
tabs: the translation log, the source CSP file, and the target Handel-C file. This would
allow the user to edit the files without the need of an extra text editor.

5 Further requirements

In this project, we have concentrated on the features and requirements of the CMOS;
however, some constructs are not used in the CMOS and were not considered. They are
listed below.

1. Two processes writing to the same channel on the same clock cycle

2. The same channels is involved in a choice, it must be in the same direction.

3. Interrupts

4. Untimed time out

5. external

6. Nested blocks of comment markers

In order to achieve a full automatic translation from CSPM to Handel-C these are some
of the constructs that still need to be taking into account.

51

Figure 2: csp2hc Graphic Interface

52

