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Abstract 
The objective of the present phase of the CRP project “Flight clearance of 
autonomous UAVs” is to certify candidate Machine Intelligence algorithms using 
formal mathematical assessment techniques. The meaning of formal in this context 
is that it reduces the certification problem to small verifiable steps that can be 
carried out by a machine. The certification of such Machine Intelligence algorithms 
falls into two parts: the formal mathematical validation of the safety of the Machine 
Intelligence algorithm; and the formal mathematical verification of the 
implementation of the algorithm. This report addresses the objective of this phase of 
the project by describing a subset of the Soar language that is essentially certifiable 
and by providing a formal semantics for programs written in this subset that can be 
verified for healthiness properties, such as deadlock or livelock. In particular the 
concept of over-determined machine intelligence is taken to be over specialisation 
leading to rule redundancy, which this report discusses and shows can be 
automatically detected as a healthiness property. The formal semantics for the 
subset of the Soar language are provided by a prototype translator from Soar into 
an non-monotonic inference engine in the formal language of Communicating 
Sequential Processes, CSP. Further such Soar programs can be verified against 
critical properties identified by a system safety case for an autonomous UAV. Finally 
the formal representation of Soar programs written in the subset can be verifiably 
implemented on an FPGA via its semantic representation in CSP.
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Executive Summary
The objective of the present phase of the project is to certify candidate Machine 
Intelligence algorithms using formal mathematical assessment techniques. The 
meaning of formal in this context is that it reduces the certification problem to small 
verifiable steps that can be carried out by a machine.

The certification of such Machine Intelligence algorithms falls into two parts: the 
formal mathematical validation of the safety of the Machine Intelligence algorithm; 
and the formal mathematical verification of the implementation of the algorithm.

The objective of the work that this report discusses is to provide the validation of a 
Machine Intelligence algorithm for the purpose of certifying it as safe. A candidate 
Soar program is developed, as currently, then the Soar program is translated into 
the CSP framework that has been developed. The translator will check that the Soar 
program satisfies certain syntactic and semantic constraints that allow it to be 
analysed, else it is rejected with relevant error messages. If rejected the Soar 
program cannot be certified and therefore needs to be modified to satisfy the 
constraints imposed by the translator. 

If the translator accepts the Soar program it will produce a representation of the 
Soar program within a formal CSP1 model. The model with the representation of the 
Soar program can then be subjected to a pre-defined set of automated checks that 
determine healthiness and safety. If the checks are all successful then the CSP 
representation of the Soar program can be transformed into a form suitable for 
direct compilation into a Field Programmable Gate Array, FPGA. An FPGA has low 
power requirements (consequently requiring less cooling) and has massive 
parallelism (which means that the CSP representation of the Soar program will be 
very efficient).

In a previous report [1] from this project, a generic CSP model that accepts a set of 
rules representing a Soar program was produced. The model at that time was far 
from complete and translation of the Soar program was done manually. This report 
is a snapshot of the design of a prototype translator from the Soar language to an 
enhanced inference model in CSP. The translator implicitly defines a subset of Soar 
that is analysable and the subsequent restrictions on a Soar programmer are 
discussed. The report also discusses what it means for a Machine Intelligence to be 
over-determined and how it can be mechanically detected.

The report addresses the objective of this phase of the project by describing the 
subset of Soar that is essentially certifiable and by providing a formal semantics for 
programs written in this subset that can be verified for healthiness properties. 
Further, such Soar programs can be verified against critical properties identified by 
a system safety case for an autonomous UAV. This is a powerful and novel 
verification technique for Machine Intelligence.

Based on the results reported in this report it is recommended that:

• the formal model of Soar in CSP is extended;

• the prototype translator is extended;

  
1 CSP, Communicating Sequential Processes is a mathematical theory and language that 
describes patterns of communication, or interaction.
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• the analysis capabilities are validated against the Soar RoadSearch algorithm 
for autonomous  UAVs.
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1 Introduction
1.1 Contractual information

This report constitutes milestone EGC02/26/002/06 for the Weapons, Platforms and 
Effectors Corporate Research Programme “Flight clearance of autonomous UAVs”.

1.2 Objectives

The objective of the present phase of the project is to certify candidate Machine 
Intelligence algorithms using formal mathematical assessment techniques. The 
meaning of formal in this context is that it reduces the certification problem to small 
verifiable steps that can be carried out by a machine.

The certification of such Machine Intelligence algorithms falls into two parts: the 
formal mathematical validation of the safety of the Machine Intelligence algorithm; 
and the formal mathematical verification of the implementation of the algorithm.

The objective of the work that this report discusses is to provide the validation of a 
Machine Intelligence algorithm for the purpose of certifying it as safe. Figure 1
describes the relevant process for certifying Soar programs, first a candidate Soar 
program is developed, as currently, then the Soar program is translated into the 
CSP framework that has been developed. The translator will check that the Soar 
program satisfies certain syntactic and semantic constraints that allow it to be 
analysed, else it is rejected with relevant error messages. If rejected the Soar 
program cannot be certified and therefore needs to be modified to satisfy the 
constraints imposed by the translator. 

If the translator accepts the Soar program it will produce a representation of the 
Soar program within a formal CSP2 model. The model with the representation of the 
Soar program can then be subjected to a pre-defined set of automated checks that 
determine healthiness and safety. An example of a healthiness condition is that the 
Soar program will not reach a point where it cannot make any more progress, i.e. it 
is in a deadlock with its environment. Clearly in some circumstances this will be a 
safety issue, but not necessarily in all circumstances. Another important healthiness 
condition, unrelated to safety, is whether the program is more constrained than it 
needs to be. If the program is over constrained then it will not be able to respond as 
flexibly as it should, largely defeating the point of using Machine Intelligence. 
Specific safety properties will be to demonstrate that a Soar program can never 
perform certain dangerous actions. What actions are dangerous depends upon the 
specific safety analysis that must be conducted on the whole system with respect to 
a set of scenarios.

If one of the checks performed on the CSP model fails then the analysis tool, called 
FDR3, reports a counterexample, i.e. under what circumstances the Soar program 
will violate the property being checked. The counterexample can be used to correct 
the Soar program and then translate it back into CSP for re-checking. If the checks 
are all successful then the CSP representation of the Soar program can be 

  
2 CSP, Communicating Sequential Processes is a mathematical theory and language that 
describes patterns of communication, or interaction.
3 FDR stand for Failures Divergence Refinement, it performs an exhaustive state space 
exploration with respect to the Failures Divergence semantic model of CSP.



UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 9
QinetiQ Proprietary

UNCLASSIFIED

transformed into a form suitable for direct compilation into a Field Programmable 
Gate Array, FPGA. An FPGA has low power requirements (consequently requiring 
less cooling) and has massive parallelism (which means that the CSP 
representation of the Soar program will be very efficient).

In a previous report [1] from this project, a generic CSP model that accepts a set of 
rules representing a Soar program was produced. The model at that time was far 
from complete and translation of the Soar program was done manually. This report 
is a snapshot of the design of a prototype translator from the Soar language to an 
enhanced inference model in CSP. The translator implicitly defines a subset of Soar 
that is analysable and the subsequent restrictions on a Soar programmer are 
discussed. The report also discusses what it means for a Machine Intelligence to be 
over-determined and how it can be mechanically detected.

The report addresses the objective of this phase of the project by describing the 
subset of Soar that is essentially certifiable and by providing a formal semantics for 
programs written in this subset that can be verified for healthiness properties. 
Further, such Soar programs can be verified against critical properties identified by 
a system safety case for an autonomous UAV. This is a powerful and novel 
verification technique for Machine Intelligence.

Figure 1 the development and analysis process.



UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 10
QinetiQ Proprietary

UNCLASSIFIED

1.3 Report outline

The report starts with an overview of the Soar language, the task of sorting blocks 
by a Soar agent is used to explain the Soar language. This is followed by section 3 
which presents an enhanced CSP model that accepts a set of rules that represent a 
Soar program. In particular the different healthiness conditions are discussed 
including the issue of over-determined intelligence, (which itself is discussed in 
more depth in section 6). The enhancements to the model have increased the 
subset of the Soar language that can be accepted and analysed for safety and 
healthiness properties.  However not all Soar programs can be analysed within the 
CSP model, hence section 4 explains the current limitations in terms of the Soar 
constructs that are disallowed for analysis purposes.

Section 5 presents the design of a prototype translator from Soar into the CSP 
model. This is followed, in Section 6, by an in depth discussion about what does 
over-determined intelligence mean in the context of a Soar program. To illustrate 
the issues and the approach taken a simple system is presented of the safety 
critical “tea maid”. In section 7 an initial evaluation of the Blocks World Soar agent 
described in section 2.2 is performed to illustrate the types of healthiness conditions 
and how a safety property can be checked. Finally, the application of the translator 
to an algorithm that defines flight paths for UAVs searching for moving vehicles (the 
RoadSearch Soar algorithm) is then discussed. The report finishes with conclusions 
and recommendations.
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2 Soar 
This section gives an overview of the Soar language and architecture, followed by a 
description of our current CSP model of Soar and the constraints we have applied 
to the Soar language. The section then ends with a return to the “Blocks-World” 
example, discussed in a previous report [1] and a simple Soar agent created to 
illustrate later examples

2.1 Soar Language Overview

Soar (State-Operator-And-Result) is a cognitive architecture that provides the 
foundations for building systems that exhibit general intelligent behaviour. At the 
first approximation, Soar is a rule-based system with (long-term) knowledge stored 
as "if-then" production rules. However, Soar also provides a flexible automatic sub-
goaling mechanism as well as a general symbolic learning mechanism (known as 
'chunking'). Finally, Soar provides a belief maintenance mechanism to automatically 
update beliefs when their basis no longer holds. For more information, see [3] and 
[4].

2.1.1 Soar Production Rules and Working Memory

A Soar system is entirely specified by a set of production rules encoding domain 
knowledge. The rules are similar to "if-then" statements, the "if" part specifying a set 
of conditions that must be met by the current situation and the "then" part specifying 
a set of actions to perform once the conditions are met.

In Soar the current situation is represented by a working memory organised as 
objects. Objects are described using attribute-value pairs, where objects may 
appear as values, and attributes may have multiple (but distinct) values. Attributes 
are named using strings such as size while values may be integers, floats, strings 
or identifiers (denoting objects). As such the working memory may be viewed as a 
directed, fully connected graph of objects rooted at a top 'state' node as in Figure 2.

Figure 2:

An example working memory composed of four objects including the top-state ‘S1’

The language of Soar production rules is very rich, with support for partial 
descriptions of objects, unification of variables, predicates, negation and destructive 
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actions (removal of working memory elements - WMEs). Although the syntax allows 
for generalised constructs such as attribute paths, disjunctions and conjunctions, 
these may all be expanded out into multiple conditions, actions or rules so that all 
conditions and actions are essentially 3-tuples of (identifier,attribute,value).

Variables may appear in the place of identifiers, attributes or values. As identifiers 
are created automatically by Soar, the identifier will always be a variable. Within a 
rule, variables unify so that the conditions and actions may describe the structure of 
working memory. Variables provide a mechanism to generalise rules and pass 
identifiers or constants matched in the conditions to the actions. Any free variables 
appearing as attributes or values in the actions are taken to be identifiers and are 
created automatically by Soar.

Conditions may be negated, specifying that the condition does not match working 
memory. Similarly, actions may specify the removal of working memory elements 
(WMEs). Removal of WMEs is recursive, removing all elements no longer linked to 
a top 'state' node (a kind of garbage collection). Lastly, conditions may be conjoined 
allowing for subtle "negative" conjunctions of conditions as in "not(A and B)".

2.1.2 The Soar Synchrony Model and Belief Maintenance

The firing of all production rules is synchronised in Soar. Rules are matched in 
parallel against the working memory, fired in parallel and their actions executed 
before the next round of rules may match and fire. This is known in Soar as an 
elaboration cycle. As attributes may have multiple values most conflicts are 
avoided; remove-add conflicts are simply resolved with removal overriding addition.

An important aspect of Soar is belief maintenance. This is an automatic mechanism 
that retracts non-deliberative beliefs (removes/adds WMEs) when their basis no 
longer holds. Non-deliberative beliefs are taken to be the actions of production rules 
that do not depend directly upon a decision. Such actions lend "support" to WMEs 
so long as their conditions still hold. When a WME has no support then belief 
maintenance will automatically remove the element.

Belief maintenance in Soar often results in unexpected behaviour. For instance, a 
WME may have negative support resulting from non-deliberative remove actions. 
When this support is removed the WME may magically reappear!

2.1.3 The Soar Decision Cycle

Central to Soar is the Problem Space Hypothesis that claims that all symbolic goal-
orientated behaviour can be cast as a search in a problem space. Here, a problem 
is taken to consist of a set of states and a set of operators to move amongst these 
states. States correspond to the details of the current situation (internal and 
external) pertinent to the current goal while operators correspond to deliberate acts 
of cognition.

In this context, Soar introduces a decision cycle as an attempt to achieve rational 
behaviour4 in terms of operator selection given a current state and a body of long-
term knowledge. The cycle is composed of a propose phase in which operators are 
proposed, followed by a fixed decision and finally an apply phase in which the 
chosen operator is applied. Within the propose and apply phases, production rules 

  
4 Specifically, the principle of Rationality is defined as: "If an agent has knowledge that one 
of its actions will lead to one of its goals, then the agent will select that action."
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fire synchronously as above until no more rules are eligible to fire. A fixed decision 
function chooses between proposed operators, using operator preferences created 
during the propose phase to guide the selection. When an unambiguous selection is 
not possible, Soar considers this to be an "impasse" signalling the need for a sub-
goal that may or may not result in progress.

Figure 3 the Soar decision cycle.

The decision cycle is an acknowledged cognitive “bottleneck”, as it forces a choice 
to be made between operators that may actually proceed in parallel. However, the 
cycle is a safe, general approach compared to the opposite extreme in which pure 
parallelism depends upon specific executive strategies to achieve serial behaviour. 
An interesting discussion on cognitive bottlenecks applicable to Soar may be found 
in [5], providing a functional analysis and possible improvements to the general 
architecture.

2.1.4 Soar Sub-Goals and Impasses

As described above, sub-goals in Soar arise quite naturally from an inability to 
select unambiguously from the set of proposed operators. Whenever Soar is unable 
to make such a decision, the system halts and a new working memory state is 
created. This new state is actually a sub-state of the current state and will hold the 
work of the sub-goal until its completion. The initial state of the sub-goal contains a 
complete description of the immediate cause of the impasse, such as operators that 
could not be decided among. Importantly, sub-states always contain a link back to 
the super-state using the attribute superstate.

The sub-state behaves just as a normal state, proposing and applying operators. In 
solving the sub-goal additional impasses may be encountered, each leading to a 
new sub-goal and sub-state. Thus, it is possible for Soar to have a stack of sub-
goals (and sub-states). Each sub-state has a single super-state and each state may 
have at most one sub-state.
To resolve an impasse, the sub-goal must generate results that allow problem 
solving at higher levels to proceed. In essence, the sub-goal must modify its super-
state leading to the selection of a new operator. When this happens, Soar 
automatically removes the sub-state (and all its sub-structure) before applying the 
new operator and continuing as before. Note that any results (WMEs) linked to the 
superstate will persist after the sub-state has been removed. For example, the 
results of the sub-goal might be a plan for achieving the original goal, which another 
sub-goal may then need to access in order to apply it and so on.

2.1.5 Soar Input and Output

Interaction with the external environment is achieved in Soar through predefined, 
dedicated structures in the working memory. All inputs to a Soar system are 
affected before the propose phase and all outputs are affected after the apply 
phase. It is then up to the system designer to define the interface to Soar in terms of 
expected input and output structures and their interpretation. For example, it is 
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common to "run a Soar system till output" so that multiple internal decisions may 
occur up to some bound before an output is required.

In the context of multi-agent systems the model of action is "action as command", in 
which a Soar agent produces actuator commands in response to sensor 
perceptions.

2.2 Return to Blocks-World

For illustration purposes we have resurrected a simple example of a planning 
problem space known as Blocks World (previously examined in [1]). In Blocks World 
the objective is to build a tower from a set of blocks given the usual laws of physics. 
In our version, three blocks named A, B and C initially rest on a table and the goal is 
to build a tower with A on top, B in the middle, and C on the bottom. The Soar agent 
must then come up with a sequence of legal block movements that achieve the 
task. For illustration, the effective state-space as defined by block movements is 
given by Figure 4.

Figure 4 The Blocks World state space of block movements

We have written a very simple Soar agent that performs this task. To keep things 
simple the agent is internalised and there are no inputs or outputs to handle. In this 
sense, the agent represents a planner who manipulates an internal representation 
of the blocks to formulate a plan of block movements. Currently, the agent performs 
little more than a random walk through the state space and only contains 16 Soar 
productions. However, it does maintain a representation of the problem using Soar 
productions that may be injected with faults. In addition, we have added two belief-
maintained rules that tell the agent when a block is "in place" (and should not be 
moved if possible).

We have also performed a manual translation of this Soar agent to our CSP model’s 
target environment. This translation (a CSP script) serves both as a "proof-of-
concept" and as an oracle against which we may validate our prototype translator 
output. This CSP script may be found in Appendix B.
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3 A Refined CSP Model of Soar
We have chosen to model Soar as a generic inference engine, adding specific 
features of Soar to our model as deemed appropriate. The model of a Soar agent is 
defined indirectly in CSP as data to a generic CSP model. As in Soar, the data 
takes the form of simple firing rules produced by an automatic translation from the 
original Soar production rules. These firing rules are essentially the same as the 
original production rules although not as expressive on an individual basis.

In modelling Soar, we have chosen a largely static approach and as a consequence 
most dynamic behaviour must be evaluated statically or at least limited. In 
particular, the CSP firing rules must be grounded (all variables expanded out to 
constants) and we assume learning has been turned off. To allow for such a static 
evaluation and to control the remaining dynamic behaviour we have chosen to place 
constraints on the Soar language. These constraints are the subject of section 4
and effectively define a subset of the Soar language that is currently analysable.

3.1 Healthiness Properties

As an initial starting point to our analysis of Soar agents, we have decided to look at 
healthiness properties of a Soar agent: behaviour that would be considered "bad" in 
any context. This is akin to an exception analysis of a conventional program. This 
analysis is at a low level and we have had to be careful not to include behaviours 
that are due just to the current implementation of Soar. At the system level, we are 
more interested in behaviour such as unintended impasses, which might 
correspond to holes in the agent's problem space - a definite problem.

The following is a list of properties we currently check for in our analysis, and 
motivates the design of our CSP model of Soar. These properties are initial 
observations and could be refined or extended as needed. In describing the 
properties below we make use of the terms “I-support” and “O-support” with 
reference to Soar production rules and WMEs. These are roughly defined as 
follows:

• A Soar production is an “O-support” rule if and only if it tests for an operator (i.e. 
a decision) in its conditions, else it is an “I-support” rule.

• A Soar WME has “O-support” if it was created/removed by an “O-support” rule, 
and “I-support” if it was created/removed by an “I-support” rule.

While the first definition can be implemented by a clear-cut syntactic check, the 
second definition is more problematic as a given WME may be created/removed by 
both “I-support” and “O-support” rules. “O-support” is associated with deliberative 
actions and persistence, while “I-support” is associated with non-deliberative actions 
and the belief maintenance mechanism.

3.1.1 Livelock (with respect to decisions and outputs)

This is when a Soar system performs an infinite sequence of elaborations during the 
propose or apply phases of the decision cycle. Here, production rules fire 
continuously and the system never reaches acquiescence (from which a decision is 
made). This may be due to:

1. An enabling-disabling loop of production rules.
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2. An infinite elaboration of the working memory state.

Enabling-disabling loops are commonly associated with belief maintained “I-
support” rules but may equally occur with just deliberative "O-support" rules. We 
may outlaw much of this looping behaviour by putting constraints on the Soar 
language. In particular, we may make the belief maintained "I-support" rules more 
or less monotonic, i.e. the rules only ever add knowledge and do not cause other 
belief maintained rules to retract. When looping behaviour does occur we may 
detect it as system livelock, in which the system is capable of performing an infinite 
sequence of rule firings without making a decision.

Infinite elaboration of the state is commonly associated with run-away computations 
such as counting and implies infinite state - clearly a problem for our static 
approach. In tackling this problem, we may try to place constraints on the Soar 
language. When constraints on the language are not feasible we may take a 
different approach and place bounds on the dynamic behaviour within the model 
(and signal an error when the bound is exceeded).

3.1.2 Unresolvable Impasses

When a Soar agent is unable to make an unambiguous decision over which 
operator to select next, Soar considers this to be an impasse. An impasse indicates 
a lack of current knowledge that the Soar system attempts to resolve by 
automatically formulating a sub-goal with the express purpose of gaining the 
required knowledge to proceed, e.g. by enabling new production rules from its long-
term knowledge.

In most cases the impasse is intended and results in a sub-goal that makes local 
progress, eventually enabling global progress. Sometimes the impasse simply 
represents waiting for the situation to change; presumably affected by another 
agent. We therefore have to evaluate all such impasses in a broader context.

When Soar is unable to resolve an impasse, this is usually apparent by an unending 
spawning of repeated sub-goals, normally state no change impasses in which a 
new operator is not selected. It is hypothesised here, that all unresolvable impasses 
eventually culminate in repeated state no change impasses. For example, an 
operator no change impasse in which an operator cannot be applied will invariably 
result in an state no change impasse next time round the decision cycle.

The current CSP model of Soar does not address the issue of sub-goals and we 
reserve this for future work. Most likely, sub-goals and their associated problem 
spaces will provide an intuition for decomposition of our analysis. Currently, all 
impasses - unresolvable or otherwise - are detected and raised as failures.

3.1.3 Cognitive dissonance (or illegal actions)

What happens when an agent issues an actuator command that cannot be 
actuated? In Soar, this question is left up to the environment to answer. For 
example in the TankSoar [6] game the environment raises a warning and ignores 
the command. In a real system, an illegal action may result in more than a friendly 
warning. It is therefore important in our analysis not to ignore illegal actions. In Soar, 
an illegal action may be due to a simple bug in the agent or due to a disparity in the 
cognitive agent’s representation of the real world, i.e. dissonance.

As an aside, the flight control technologies being developed elsewhere in this 
programme, are being designed to provide agents with information on the UAV’s 
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current capability.  This may be either via warnings, raised in response to illegal 
actions, or via a continuously updated parameter set which informs the agent of the 
vehicles current limitations.

3.1.4 Redundant Productions.

The purpose of expressing Soar’s rules as rules within a CSP inference model is to 
essentially perform a reachability analysis to determine whether “bad” states can be 
reached through executing Soar rules. A “bad” state would typically be an unsafe 
situation. Although the reachability analysis offers assurances that the rule set is 
sufficient to achieve safety, it offers no guarantee that each of the rules are 
necessary. If a rule within the CSP model is unnecessary then it could be removed 
without affecting critical functional properties. A complication arises because a 
single Soar rule can give rise to multiple rules in the CSP model. However checking 
each of these in turn provides evidence of whether the Soar rule is redundant and 
hence whether the machine intelligence embodied in the Soar rules is over-
determined. These issues are discussed in more detail in section 6.

3.2 The modelling approach

Our CSP model of Soar starts with the concept of a "datamap", a static vision of all 
possible WMEs that may exist for a given problem space. The datamap is a 
directed graph with WMEs as nodes and matching Soar identifiers defining the links 
between nodes. There is always one root node, the top 'state' node, and the graph 
must be fully connected. Usually the graph is simply a tree, but it is not uncommon 
to find many-to-one links or even cycles. In the past, Soar datamaps have been 
used successfully for documentation and even validation (see [7],[8]). Importantly, 
there are tools available to generate such datamaps semi-automatically. Figure 5
shows a simplified datamap of the Blocks World Soar agent with WMEs annotated 
with their attribute and possible values.

Figure 5 A simplified datamap of the Blocks World Soar agent

In this context, we may construct a model of Soar at the level of atomic facts
corresponding to WMEs and the actual instances of production rules that operate 
over these facts. We may choose to incorporate parts of the Soar architecture into 
the model or simply encode them as extra rules. Following a translation to this low-
level framework, we may then use a model checker to exhaustively search the 
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space of possible rule firings for some of the properties described above. Any 
failures found should then always be interpreted within the original Soar agent as 
the model may introduce artificial failures through abstraction, i.e. false negatives.

The remainder of this section is divided into an overview of our approach and a 
report on the current status of the model. Issues pertaining to the automatic 
translation of Soar productions to this framework we reserve for section 5.

3.2.1 Our Approach

The primary focus of our CSP model of Soar is the atomic facts or rather WMEs that 
define the state space of a Soar agent. We will assume for the time being that a 
given state is defined by the truth status of each of the datamap WME nodes. In 
particular, there is no way to break links between nodes, as Soar requires working 
memory (as defined in our datamap by active/true nodes) to be fully connected at all 
times.

Even for the Blocks-World example, the apparent state space is huge. However, the 
actual state space is almost always much smaller - the graph must always be fully 
connected and leaf nodes usually only have one or two possible values at a time.

If the state space of a Soar agent is defined by the truth status of each datamap 
WME, then it is the Soar production rule instances that allow the agent to transition 
from one state to another. Here, an "instance" is a grounding of variables to 
constants. For example, in the Blocks World Soar agent each production rule 
proposing to move a block corresponds to about six possible instances –
representing potential, perhaps impossible scenarios.

While variables denoting Soar constants may be grounded using the datamap, 
variables that denote Soar identifiers cannot, as Soar identifiers are only generated 
at run-time. Instead, we associate a Soar identifier with a single WME node in the 
datamap (that in some sense declares the identifier variable). In most cases the 
WME node is uniquely determined by the context. In other cases the variable may 
correspond to more than one WME node. For example, in Blocks World the top 
‘state’ attribute block may refer to up to three blocks (not shown in the simplified 
datamap of Figure 5). This is common in Soar – such attributes are known as multi-
attributes when the same attribute name may reference multiple values.

The first enhancement we make to our generic inference engine is to add the ability 
to "forget" previously learnt facts (allow it to be non-monotonic). This is an essential 
component of the model, and enables us to cope with destructive actions within 
production rules, i.e. removal of WMEs. Without the ability to forget it would be very 
hard to represent change within a Soar agent and harder still to translate Soar 
productions to our CSP model. The mechanism we use to model destructive actions 
is to introduce special rules to represent the action of forgetting facts.

To model belief maintenance within Soar it is important to understand which 
production rules it applies to and how the mechanism works. First of all, to repeat 
part of section 2.1, belief maintenance applies precisely to productions that do not 
depend directly upon a decision (a syntactic check). Such rules are known as 
operator application or “O-support” rules and are understood to have persistent 
actions. All other rules have belief maintenance and only "support" their actions as 
long as their conditions still match. For example, when a block that is “in place” is 
moved, the belief loses support and Soar automatically removes the WME 
representing the belief.
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As a mechanism, belief maintenance is usually described in stative terms of 
"support" given by production rules for WMEs. However, it may also be described 
as a set of implicit rules that accompany the normal production rules. In simple 
terms, whenever we forget a fact that a belief maintained rule depends on we also
have the opportunity to forget its conclusions. Of course, a given fact may be 
supported by more than one rule and we have to face the issue of "collective" 
support.
In our modelling, “support” is taken to be the ability to re-learn a fact. If we assume 
such implicit belief maintenance rules fire only once, then all WMEs that have 
collective support will eventually be re-learnt. Of course, this assumes the system is 
always capable of reaching a stable state. When it is not we may detect this using 
our model checker - and hopefully attribute it to a failure of one of the healthiness 
properties of section 3.1 above.

For illustration, the following is an example belief maintenance rule taken from our 
translated Blocks World Soar agent (see Appendix B). The rule implements the 
forgetting of the “in place” property of a single block and describes its potential 
effects – in this case the forgetting of the “in place” properties of other blocks. This 
rule is special and has the effect of forgetting its antecedents, hence the rule will 
only fire once.

({Disable.wme.st.block_3.inplace.yes,
wme.st.block_3.inplace.yes},

{Disable.wme.st.block_2.inplace.yes,
Disable.wme.st.block_1.inplace.yes})

The next enhancement to our model is to give operators first class status by 
modelling them as defined events as in operator.Moveblock.a.table. This 
enables us to talk about operator proposals and decisions as actual events and 
eases the modelling. We may then model Soar's fixed decision function as the vital 
link between operator proposal and decide events. The operators and their 
parameters (name, subject etc) may be extracted semi-automatically from the 
datamap. In a similar manner we may also give the standard memory-mapped input 
and output structures special status as defined events.

There is a high degree of synchronisation in the Soar implementation. While this is 
an essential feature for the Soar programmer interested in achieving rational 
behaviour, it does impose a cognitive bottleneck and in fact complicates our 
modelling and analysis of Soar. In our model of Soar, we have chosen to abstract 
away from most of this synchronisation and are able to explore all possible 
execution sequences. This is an important step and may facilitate a massively 
parallel implementation of a Soar agent on a device such as Field Programmable 
Gate Array.

3.2.2 Current Status of the Model

The current CSP model of Soar is capable of detecting most of the healthiness 
properties described above. However, the model is still immature and does not 
support certain key features of Soar including sub-goaling, negated conditions, 
operator preferences and many-to-one links (in which a WME may have more than 
one parent in the datamap). In addition, the current treatment of belief maintenance 
introduces an explosion in state space. The remainder of this subsection discusses 
these limitations.
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The sub-goaling feature as described in section 2.1.4 is very complicated and we do 
not foresee its inclusion in the CSP model in the near future. However, subgoals will 
surely be invaluable in the longer term for decomposition of our analysis. For the 
time being, the analysis of a Soar agent containing sub-goals must reduce to an 
analysis of its sub-goals (or rather problem spaces) and an informal argument made 
to the safety of their combination. For example, we may at least check an agent 
always enters and exits a sub-goal on the right conditions.

Negated conditions require a slight but significant enhancement to the CSP model 
which we have withheld from the current model in order to consider its implications. 
Negated conditions are an essential feature of nearly all Soar systems and we 
intend to introduce them in a limited fashion (see section 4.2). For example, it is 
hard to initialise a Soar system through operator applications without a check to tell 
that the system isn't already initialised.

As well as proposing operators for selection, Soar productions may also specify 
preferences between the proposed operators, which are then used by the fixed 
decision function. The addition of such operator preferences to the CSP model 
would probably only involve a slight enhancement to the CSP decide function. 
Alternatively, we may ignore operator preferences and consider all proposed 
operators as having indifferent preference. However, this prevents us from detecting 
certain types of impasses that are a result of incomplete operator preferences.

Recall that in section 2.1 we described the removal of WMEs as recursive (or 
garbage collection) in that the removal of a parent WME may result in the removal 
of all its children, grandchildren and so on if they are no longer linked to the top 
'state' node. We have not addressed this feature in general yet – instead we 
currently put constraints on the Soar language to enable a temporary solution. If we 
were to allow many-to-one links we would certainly need to address the feature 
properly (as such links interact with the recursive removal). An approach to handling 
such links would probably call for special rules just as for belief maintenance.

Finally, our treatment of belief maintenance introduces an explosion in the state 
space of the model even for the Blocks World Soar agent. This seems to be due to 
competition between the belief maintenance rules and normal inferences and is 
symptomatic of a larger issue – the importance of synchronisation and control within 
Soar and artificial intelligence in general. In particular, we have not modelled
elaboration cycles in Soar that separate the firing of normal rules from belief 
maintenance. While we may reduce the importance of control in Soar through 
constraints such as those in the following section, we may suffer from issues such 
as “stale” information without an alternative model of parallel control.
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4 Soar Language Constraints for analysis
This section describes the constraints that we have imposed on the Soar language 
for our modelling and analysis. Some constraints are considered as fundamental
and non-negotiable, while others reflect current limitations of the CSP model or 
prototype translator. We have therefore divided up this section accordingly. For 
each constraint, we give a synopsis, a description and our rationale. 

4.1 Fundamental Constraints

1. We do not allow WME identifiers to be used as attributes.

This feature does not seem to be used in practice; its meaning is unclear and would 
complicate our CSP model unnecessarily. The Soar User Manual gives an example 
of its use to provide meta-information about an attribute in the form of an object.

2. We do not allow negative actions in belief-maintained “I-support” rules, i.e. 
reject ‘-‘ preferences.

As explained in section 2.1.2, negative (or destructive) actions and belief
maintenance is unintuitive and may result in strange, unexpected behaviour. Often, 
such actions may just as well be performed using (deliberative) “O-support” rules. 
We have therefore decided to outlaw negative actions within “I-support” rules. 
Incidentally, this also has the effect of simplifying the model as belief maintenance 
becomes more predictable.

3. A given WME may only be created/removed by an “I-support” or “O-support” 
rule but not both.

When a given WME may receive both “I-support” and “O-support” we often get 
unintuitive behaviour when such support is removed. In particular, later positive “I-
support” may override earlier negative “O-support”.

We have decided to outlaw such behaviours with the aim of removing potential 
“bad” behaviour as in section 3.1. In our limited experience such clashes of support 
appear to be rare and unnecessary. The constraint also greatly simplifies our 
modelling as it allows us to partition WMEs by their behaviour. There may well be 
exceptions to the rule, for instance where we want to “firm up” non-deliberative 
beliefs to deliberative beliefs.

4. An “O-support” WME may not be the child of (augment) a “I-support” WME.

Following on from the previous constraint, recall that the removal of WMEs involves 
a recursive removal of all (unlinked) children. This implies potential conflicts 
between “I-support” and “O-support” – the removal of an “I-support" WME may in 
turn cause the removal of an “O-support” WME and visa versa. In the later case, the 
“I-support” WME that augments some “O-support” WME must actually depend on it 
and will be removed by the action of belief maintenance anyway, and hence is not a 
“conflict”.

We have decided to outlaw the first case in which an “O-support” WME augments 
an “I-support” WME and may get removed simply through belief maintenance. While 
this may not directly contribute to “bad” behaviour, it again complicates our 
modelling and seems unnecessary.
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5. We do not allow unbounded variables to be used in attribute tests, for instance 
in “generic” Soar productions.

We have decided to outlaw, or at least curtail, the use of unbounded variables in 
attribute tests. Here, an “unbounded” variable whose possible values may not be 
determined within the scope of the production rule. Although quite natural, 
unbounded variables seem disingenuous with “safety-critical” systems and would 
undermine our static approach to modelling Soar.

Given this constraint, an attribute must test for a constant, a disjunction of 
constants, or test for a variable bounded elsewhere within the production.

4.2 Current Limitations

1. The “datamap” (or production rules) may not contain any cyclic links.

To keep things simple we do not cater for cycles within the datamap or production 
rules. This does not appear to be a significant restriction for production rules. 
Indeed, in the RoadSearch [2] case study (discussed later in 7.2) we only found 2 
productions containing cycles – one of which was a simple self-loop placed on the
standard attribute topstate, used to point to the top-level state. We have not 
assessed the impact on the RoadSearch datamaps as we do not yet have complete
datamaps for the RoadSearch case study. However, it is likely there will be an 
impact as the datamap must contain all possible links between WMEs.

2. We do not allow negated conditions in production rules, i.e. -^on table.

Without negated conditions, our modelling becomes much easier. However, this is a 
major limitation as negated conditions are very common and useful. Further, it is 
hard to see how they could be eliminated from a Soar system without a great deal of 
effort.

We therefore intend to weaken the constraint above to allow negated conditions to 
be used where they do not substantially complicate our modelling of Soar. We will 
most probably only allow “O-support” (deliberative) conditions to be negated. In 
particular, we wish to prevent negated conditions from causing problems for belief 
maintenance. From inspecting the RoadSearch case study this seems a good 
compromise.

For the time being, all negated conditions must be converted or eliminated. In the 
Blocks World Soar agent we managed to reduce the few negated conditions to 
negated tests as in “^on <> table”. This matches any WME with attribute on and 
any value but table.

3. We do not allow many-to-one links between WMEs, i.e. a given WME must have 
no more than one parent.

As described in section 3.2, the current CSP model does not address recursive 
removal of WMEs in general. This has prevented us from handling many-to-one 
links within the datamap (or production rules for that matter) as they interact with the 
recursive removal procedure as described in section 2.1.1.
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5 Translator Design

5.1 Overview

This section describes the design of a prototype translator from Soar to our CSP 
model of Soar. It is the translator that is responsible for the static expansion of Soar 
production rules to CSP firing rules as well as the definition of certain datatypes and 
channels. Together, the products of the translator are then used as data to our 
generic CSP model of Soar to form a complete CSP script representing the Soar 
program. Of course, if the Soar agent interacts with an external environment the 
analyst must also write a CSP process to model the behaviour of the environment. 
This is usually a simple matter of mapping Soar output events to appropriate input 
events.

Figure 6 The architecture of our prototype translator.

Although referred to as a notional “translator”, our prototype is actually a collection 
of tools as shown in Figure 6 above. The Soar Parser is a general purpose 
parser/simplifier we have written and covers the entire language of Soar 
productions (see Appendix A for the Soar grammar). The Datamap Generator is a 
third-party tool (VisualSoar [8]) used to automate the generation of Soar datamaps 
needed for the static expansion of Soar productions. The CSP Generator is the 
heart of the translator, enforcing our Soar language constraints but carries out only 
part of the translation – the actual work of expanding Soar productions is performed 
within CSP using set comprehension.

The following sections describe the internal representation used to represent Soar 
productions and datamaps, and then the actual process of generation.

5.2 The Internal Representation

The representation we use for Soar productions is essentially the simple “internal 
form” as used by the Soar kernel. In this form a Soar production consists of a set of 
conditions and actions, each a basic 4-tuple of (preference,identifier,attribute,value) 
created by expanding attribute paths, synthesising implicit variables and so on. In 
fact, the “internal form” of any production may be viewed in an interactive Soar 
session by using the print command.

We make heavy use of the concept of a Soar “test”. This is the basic datatype used 
by the Soar language for the specification of identifiers, attributes and values. The 
syntax for Soar tests lacks punctuation and is hard to read. However, we do have 
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an authoritative LALR(1)5 grammar for the Soar language, part of the on-line 
documentation of the Soar kernel [9] and listed in Appendix A. Inspection of the 
Soar kernel source code confirms that its does in fact adhere to the grammar and 
so we have used it as the basis for our prototype Soar parser/simplifier.

For reference, a Soar “test” may be one of:

• A Soar constant (integer, float, symbolic), e.g. 23, 1.134 or house
• A Soar variable, e.g. <block>, <s>
• A relational predicate, e.g. <> table, > 0, < <var>
• A disjunction of constants, e.g. << a b c >>, << 1 2 3 >>
• A conjunction of the above, e.g. { <name> << a b c >> }

To illustrate the use of Soar tests and the expansion of productions to the internal 
representation we will use a production from our Soar Blocks World agent:

sp {apply*move-block*to-table
(state <s> ^operator <op>

^block <moving> {<> <moving> <origin>})
(<op> ^name move-block

^block <m>
^destination table)

(<moving> ^name <m> ^on <o> ^below o)
(<origin> ^name <o>         ^below <m>)

-->
(<moving> ^on table ^on <o> -)
(<origin> ^below o ^below <m> - )}

This is an operator application (“O-support”) production rule used to apply the 
move-block operator in the case when moving blocks to the table. The production 
name apply*move-block*to-table is followed by a set of conditions, an arrow, 
and then a set of actions. Conditions and actions are delimited by parentheses and 
contain an identifier variable followed by a list of attribute-value pairs. Attributes are 
always indicated using a hat symbol ^ as they may take multiple values. Finally, the 
top ‘state’ node, here <s>, must always be identified in the conditions by the marker 
“state”. 

In the production above the conditions test for an operator <op> that moves some 
block named <m> to the table. They also test for two distinct blocks <moving> and 
<origin> (note the conjunctive test for <origin>), and a situation in which 
<moving> has the same name as the moving block, is clear (denoted by “o”) and is 
sitting on the block <origin>. Given these firing conditions, the production effects 
the block movement in the actions by updating the state of each block. 

Once parsed and simplified, the production produces a set of 4-tuple conditions and 
actions that may then be wired together to form a production graph. This is the 
actual internal representation we use in our CSP generator and allows us to make 
additional semantic checks and determine violations of our Soar language 
constraints. The production graph is wired up in a parenting process as follows.

  
5 LALR(1) is a type of grammar that may be parsed Left to Right only using one Look Ahead 
token.
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First, the parents of a node are all those nodes that contain the node’s identifier as a 
value test; the only constraint being that action nodes may not parent condition 
nodes. We may then link all parents to their children to form the complete graph as 
in Figure 7. Each node is labelled with its attribute and value tests separated by a 
colon ‘:’, conditions are given a light shade and actions a dark shade (preferences 
are also indicated using colour). 

Figure 7 The production graph for apply*move-block*from-table*to-
block.

Our prototype Soar Parser is written in Perl using a parser compiler known as 
yapp6. This allows us to separate out the grammar from the business of constructing 
conditions and actions. The semantic actions that construct these simplified 
conditions and actions are based on the Soar kernel parser source code but are 
much simplified for our purposes.

While constructing and debugging the Soar Parser we made extensive use of a 
graph visualisation tool known as Graphviz [11]. We intend to include this tool as 
part of the prototype translator, and use it to output production graphs such as 
Figure 7 that violate the Soar language constraints of section 4 (e.g. cycles, many-
to-one links) so that the analyst may quickly determine the cause.

5.3 Generation

The process of generation is analogous to the work of a compiler; there is a target 
environment – our CSP model of Soar, to which we must map our source language 
of Soar productions. The CSP generator also takes on the activities of a compiler. 

  
6 Yapp – Yet Another Perl Parser compiler, a yacc-like clone for perl [10].
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Beyond merely parsing the source language, we will perform a semantic analysis, 
code generation and perhaps optimisation. Semantic analysis will be used to check 
certain assumptions of the modelling, for instance containment of productions within 
the datamap. Code generation will produce the actual CSP, mapping Soar symbols 
to legal CSP symbols, constructing CSP datatypes/channels and producing the 
CSP firing rules. Again, the CSP Generator is written in Perl.

5.3.1 Target Environment

The target environment, our CSP model of Soar, has to some extent been 
described by section 3. However, in generating the data for our generic CSP model 
we may also make extensive use of the CSP functional language CSPm. This 
enables us to make a trade-off between processing within our translator and 
processing within the CSP, i.e. the model checker FDR. Currently, though, besides 
the static expansion of productions through set comprehensions, we make little use 
of CSP in our generation. The major features of our current target environment are 
as follows:

• WMEs are named by an attribute path + value.
• All operators must be pre-declared by “name” and parameters, e.g. 

Moveblock.{a,b,c}.{a,b,c,table}.
• Datamap values are made accessible through the function “vals”.
• Datamap multi-attribute values are made accessible through the 

function “multi”.
• CSP firing rules are specified using a 3-tuple of 

(name,{conditions},{actions}).
• WME conditions and actions are specified using the channel “wme”.
• Negative actions are distinguished using the channel “Disable”.
• Operator proposals and applications are specified using the channels 

“propose” and “operator” respectively.

To illustrate the above, the following is an example of a set comprehension from our 
“proof-of-concept” CSP translation of the Blocks World Soar agent (see Appendix 
B).

propose_moveblock_2 = {
(propose_moveblock_totable,
 {

wme.B1.name.A1,
wme.B1.on.O1,
wme.B1.below.o

},
{

propose.Moveblock.A1.table
}

) | B1 <- multi2(st.block),
A1 <- vals(B1.name), O1 <- vals(B1.on),
O1 != table

}
Here, the expression expands to a set of CSP firing rules that together represent 
the Soar production propose*move-block*to-table. A vertical bar ‘|’ in the set 
comprehension separates the template CSP firing rule from a list of variable 
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bindings used in the expansion. A CSP firing rule is then produced for all possible 
variable bindings.

Expansion is over the possible values for a multi-attribute “block” and the possible 
values for leaf nodes in the production graph, i.e. “name” and “on”. Note that the 
relational test “<> table“ contained in the production graph is passed into the 
CSP set comprehension as the constraint “O1 != table”, and that the operator 
proposal actions are reduced to a single CSP “propose” event.

5.3.2 Semantic Analysis

The semantic analysis phase of our prototype translator has not been designed yet 
but is expected to involve the analysis of production graphs against the datamap 
graphs supplied by the analyst. In particular, we intend to enforce some of the 
fundamental constraints concerning potential conflicts over “I-support” and “O-
support” as well as the issue of “unbound” Soar variables, something that may be 
hard and undesirable to do within the CSP model of Soar (we want to protect the 
analyst).

Given that the static expansion is performed within the CSP as above, an obvious 
check to perform will be to check for containment of production graphs within the 
datamaps. This may be a simple matter of checking that each production graph 
matches a datamap (which may already be done using the VisualSoar tool [8]), or 
may even include reasoning over production graphs to check for undeclared “multi-
attributes”. Related to the latter check is the question of the “completeness” of the 
datamaps, i.e. whether our static expansion of Soar productions covers every 
possible production “instance”. This is an open question – for the time being we 
make the assumption that our datamaps are complete after analyst input.

Finally, we are likely to want to perform some kind of data refinement. For instance, 
we cannot currently handle inequalities and a semantic analysis could be used to 
determine range abstractions such as “x_lt_9”, perhaps with analyst assistance.

5.3.3 Code Generation

Code generation within the prototype translator is currently rather bespoke and not 
quite complete. However, the translator is capable of producing the set 
comprehensions for CSP firing rules as in section 5.3.1 above, and of mapping 
Soar’s symbols to legal CSP symbols. Still to complete are the construction of the 
CSP datatypes/channels from an analysis of the datamaps and the actual 
realisation of a complete CSP script.

The generation of the CSP set comprehensions is currently performed in a single 
pass through the production graph as follows. The algorithm will be subject to 
change once the current limitations of section 4.2 are resolved and is provided for 
illustration only. It assumes all nodes in the production graph have been previously 
decorated with semantic information such as “multi-attribute” status.

The algorithm consists of a depth-first traversal of the production graph, updating a 
symbol table and set of outputs (conditions, actions, proposals, applications, 
constraints). As such it is quite complicated and should really be separated into 
multiple passes. The key behaviour is as follows:

• Soar variables are declared whenever they appear as equality tests.
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• Each Soar variable declaration binds a CSP variable using the ‘vals’ 
function, repeated declarations necessitate an implicit equality constraint.

• For Soar variables denoting identifiers, the ‘vals’ function uses the special 
value na.

• Soar tests are converted to CSP constraints over the Soar variable 
declared in the test.

Once a traversal of the production graph is complete we realise the collected 
outputs as a CSP set comprehension. In particular, the CSP constraints must be 
reordered to meet “declaration before use” dependencies using a topological sort. 
Any operator proposals or operator applications must be output as the special 
propose and operator events. We use the special value na to specify any fields 
that were not defined in the production.
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6 Over-determined Intelligence
6.1 What is over-determined intelligence?

In this report we are taking over-determined intelligence to mean that the collection 
of Soar rules have given rise to a system that is more specialised than it needs to 
be. For example in the “blocks world” case study, if the blocks were different colours 
then we might have a Soar program that could only arrange white blocks but was 
unable to deal with red blocks. Clearly the objective would be to have a Soar 
program that could arrange blocks irrespective of their colour and only being able to 
arrange white blocks is a characteristic of an “intelligence” that is over-determined.

The problem is that we can recognise the above example of over determination, but 
other examples might be more complex or subtle. Indeed some examples of over 
determination might be subjective depending upon the context in which the machine 
intelligence operated. Instead an objective characterisation of over-determined 
intelligence is required that can be determined mechanistically. The characterisation 
that we choose is of rule redundancy. This will not capture all types of over 
determination, but it will catch over specialisation due to too many rules being 
added. This characterisation of over determination is similar to the concept of 
completeness in Inductive Logic Programming when a set of rules should cover all 
positive examples from a learning set.

A working definition of a redundant rule is:

Definition 1 A rule is said to be redundant if it cannot, does not, or need not fire, 
and the observable behaviour of the program is the same if the rule is removed.

In this section, we explore this definition, identifying several types of redundancy, 
and showing how their presence can be detected.

6.2 Classes of redundant rules

Before discussing redundant rules further a few definitions are needed.

Definition 2 Conjunctive normal form for rule sets
A rule set is in conjunctive normal form if it is a conjunction (sequence of ‘and’s) 
consisting of one or more rules, each of which is a disjunction (‘or’s) of one or more 
hypotheses leading to the same conclusion.

We will also adopt the syntax for a rule in definition 3. This definition expresses a 
rule as an implication: if the hypothesis h is true, then the conclusion c can be 
inferred.  In this definition, h may be a conjunction of several facts, but c is a single 
fact.  This syntax shows that rules, and sets of rules, can be described in terms of 
logical propositions.

Definition 3 Syntax of a rule:  h=>c  

6.2.1 Non-firing rules

The first major class of redundancy is rules that do not fire.  A rule may not fire for 
one of several reasons:  
• the hypothesis of the rule is encapsulated by another rule; 
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• the hypothesis is trivially false;

• the system cannot evolve into a state in which the hypothesis can be 
asserted. 

If ‘A’ is a hypothesis for the rule “A => C” and ‘B’ is the hypothesis for the rule “B => 
C”, such that ‘A’ is a stronger hypothesis than ‘B’ (i.e. “A and B” is logically 
equivalent to ‘A’), then the rule “B => C” is absorbed by the rule “A=> C”.

The second case of a non-firing rule is one where the hypothesis of the rule is 
trivially false.  Such a situation can arise, for instance, when the hypothesis of a rule 
is two conflicting facts such as “block A is on top of block B” and “block B is on top 
of block A”.

An important result with regards to these two areas of redundancy is that they can 
be removed automatically using a simple decision procedure.

The third possibility for a non-firing rule is that the rule is unreachable.  This 
situation can arise if, for instance, the system never evolves into a state where the 
hypothesis is known to be true, even though the hypothesis itself is not trivially 
false.  An unreachable hypothesis is a consequence of the behaviour of the system, 
rather than a property of the rule itself, a property that is not readily detectable using 
conjunctive normal form.  Instead, FDR can be used to assert that a state exists in 
the system where the rule can fire.

6.2.2 Unnecessary rules

The second major class of rules that can be shown to be redundant are 
unnecessary rules. A rule is unnecessary if it establishes an irrelevant fact, one that 
neither appears in the hypothesis of another rule, nor is observable in the external 
world.

Example Two unnecessry rules

 r5 = h => c
 r6 = c => h

In the example above we have a pair of potentially unnecessary rules.  The first 
rule, concludes c when h is true; while the second concludes h when c is true.  If 
no other rule in the set requires c in a hypothesis, and c is not externally visible, 
then these two rules do not conclude any useful information about the state of the 
system, and can be removed.

6.2.3 Abstract modes

The final area of redundancy discussed in this paper concerns abstract modes 
within a set of rules.  Unlike the other areas of redundancy discussed in this paper, 
this is not readily detectable using tools, but relies on well chosen modelling 
decisions.  However, when abstract modes are built into the rule set, the 
correctness of the abstractions employed can be verified using FDR. By identifying 
suitable abstract modes, it is often possible to introduce several new rules to 
replace a large set of existing rules.
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Definition 4 Abstract modes

An abstract mode exists in a rule set when one conclusion can be inferred from a 
set of disjoint hypotheses that are continuous over a range of senses, and no other 
rules depend on those hypotheses.  

The following example contains a simple definition of a fuel tank in an aircraft.  The 
fuel tank emits sensor measurements indicating its fuel level, upon which two 
control systems rely.  One is a flight control system, relying on detailed fuel 
information; the other is a fuel control system, concerned with making sure that fuel 
can only be drawn from, or put in, to the tank when appropriate.  These 
relationships can be expressed in CSP as: 

channel level : 0..20

Fuel_Control [| {|level|} |] Fuel_Tank [| {|level|} |] 
Flight_Control

Senses emitted by the tank indicate the level in the tank, an integer between 0 and 
20 (where 0 corresponds to an empty tank and 20 a full tank).  It is the responsibility 
of the fuel control system to ensure that fuel cannot be drawn from an empty tank, 
and cannot be filled into a full tank.  This requirement is described by the rules 
below. The full enumeration of this rule set amounts to 40 rules.

level.0 => fill
level.1 => fill
level.1 => draw
...
level.19 => fill
level.19 => draw
level.20 => draw

The structure of these rules can be abstracted:  the conclusion is the same across 
the range 1-19-which can be described by the abstract mode, normal. A new rule 
set is given below.

Sensor information is used to establish the mode of operation, and actuations are 
defined in these terms.  When a sensor signal is received indicating the system is 
no longer in a given mode, the mode is forgotten.  The abstract rule set consists of 
12 rules.  

level.0 => not normal
level.0 and not normal and level.1 => not level.1
level.1 and not normal => normal
level.1 and normal and level.0 => not level.0
level.19 and not normal => normal
level.19 and normal and level.20 => not level.19
level.20 => not normal
level.20 and not normal and level.19 => not level.19
normal and not level.0 and not level.20 => fill
normal and not level.0 and not level.20 => draw
level.0 and not normal => fill
level.20 and not normal => draw
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6.3 A simple example

In this sub-section, we present a simple example of a control system, and an 
associated rule set.  We then apply the techniques discussed in section 6.1 to 
expose, and remove, areas of redundancy. The example is a simple kettle which 
can be used to boil water, to pour water, or, occasionally needs refilled. 
Unconstrained use of the kettle leads to a hazardous situation.  To solve this 
problem, a control system, in the disguise of a maid, is deployed.

The water level in the kettle can range between the values 0 and 4, where 0 is the 
minimum and 4 is the maximum; the minimum safe level is 1, and maximum safe 
level is 3 before burnout or spillage become a threat.  The kettle indicates that it is 
ready for operation, and confirms an initial (safe) water level of 2. 

6.3.1 The kettle

max = 4
min = 0

safe_min = 1
safe_max = 3

start_level = 2

inc(x)= if(x==max) then x else x+1
dec(x)= if(x==min) then x else x-1

Kettle =
kettle_ready -> indicator.start_level -> Kettle'(start_level)

The CSP above defines a kettle in terms of the behaviour relevant to some 
observer. It starts with some event that indicates that the kettle is ready, perhaps 
some initialisation event. In this simple example the kettle magically always starts 
with water at a certain level,  indicated by the constant start_level which, in this 
case, is defined to be 2. The kettle then enters into normal operating mode that is 
defined by the process Kettle’ defined below. 

In normal operating mode a user of the kettle may choose to pour water from the 
kettle.  After doing so, the kettle emits a sensor signal to confirm the water level has 
reduced, and then recurses.  Alternatively, a user may choose to boil water.  This 
act results in some steam being produced-which also causes a drop in the water 
level.  The third option is to fill the kettle with some more water, resulting in the 
water level increasing.  The remaining options describe the two hazards:  should the 
water rise above the safe level, then the kettle will overflow and water will spill out.  
Alternatively, should it drop below the safe level, the kettle will burnout.  After each 
hazard, the kettle deadlocks. 

Kettle'(level)=
pour -> indicator.dec(level) -> Kettle'(dec(level))
[]
boil_water -> indicator.dec(level) -> Kettle'(dec(level))
[]
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 fill -> indicator.inc(level) -> Kettle'(inc(level))
[]
level > safe_max & spill -> STOP
[]
level < safe_min & burnout -> STOP

The safety criterion is to ensure that the kettle never enters a hazardous state, i.e. 
will never overflow or burnout.

assert STOP [T= Kettle \ (All_Events \ Disaster_Events)
Using FDR, an analysis provides a counter example, a trace that leads to the kettle 
burning out.  Unconstrained use of the kettle is therefore not safe. The solution is a 
control system designed to allow a user to pour the kettle when it is in a safe state, 
and fill and boil the kettle when it is appropriate to do so, such as below7. 

Rule1 = indicator.2 => pour
Rule2 = indicator.2 => boil_water
Rule3 = indicator.2 => fill
Rule4 = indicator.3 => pour
Rule5 = indicator.3 => boil_water
Rule6 = indicator.1 => fill
Rule7 = indicator.3 and boil_water => pour
Rule8 = indicator.2 and indicator.3 => pour
Rule9 = indicator.2 and not indicator.2 => fill

The implementation of the control system is the parallel composition of processes 
firing individual rules. The composition of the control system and the kettle is given 
below. As the control system is responsible for filling and boiling the kettle, these 
events are hidden from the external view of the system.  The only external 
observation is the act of pouring the kettle: the functionality required by a user of the 
kettle. 

Controlled_Kettle =
(Maid[|{|fill,boil,pour,indicator|}|]Kettle)\{|fill,boil,indicator|}

The process Controlled_Kettle is the parallel composition of the processes Maid 
and Kettle such that they only progress individually if they are both ready to perform 
the events “fill”, “boil”, “pour” and “indicator”. Any other event, such as Kettle_ready, 
can occur independently. The events “fill”, “boil”, “pour” and “indicator” are hidden 
(using the hide operator ‘\’) to prevent outside interference with the system 
definition.

A safety analysis on the new system reveals that now the kettle is safe:  the control 
system enforces the condition that filling and boiling are done when appropriate.  
Furthermore, a second refinement check evidences that a user can pour the kettle 
when desired, and it does not contravene the safety condition in doing so.

  
7 Of course the above rules are contrived to illustrate the issues of redundancy and would in 
practice never occur for such a small set of rules. For a distributed control system with 
hundreds, or even thousands of rules this could occur. However it is likely that in practice 
redundancy will arise from subtlties of rule expression for a particular problem. How these 
might manifest themselves is beyond the scope of this report.
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Although safe, the implementation of the control system should also be optimal:  it 
should not contain redundant rules. Using a decision procedure, rule9 is shown to 
have a false hypothesis and can be removed. Furthermore, FDR confirms rule8 has 
an unreachable hypothesis and can also be safely removed. In fact FDR would also 
show that rule9 would be unreachable because of the inconsistent hypothesis.

Rule 4 presents an interesting quandary. Reducing to the normal form suggests this 
is absorbed by rule 7, and should be removed. However, while doing so still 
observes the safety criteria, it contravenes the standard property of liveness. 
Liveness is the property that a system does not idle forever performing no useful 
function. It should be concluded, therefore, that this rule can be removed if only the 
safety properties are of interest, but not if the liveness property must also be 
observed. This example shows that when a rule is removed through conjunctive 
normal form and absorption, checks should be made to ensure that any liveness 
properties of interest are still preserved. This suggests that using the reachability 
analysis provided by FDR is necessary and sufficient to guarantee safety and 
liveness in a rule based system.
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7 Analysis & Examples
This section covers an initial evaluation of our CSP model of Soar using the Blocks 
World Soar agent described in section 2.2. We also report on the progress towards 
the analysis of a real Soar agent, the RoadSearch case study.

7.1 Blocks World

Before writing the prototype translator described in section 5 we wrote a manual 
“proof-of-concept” translation of our Blocks-World agent to our CSP model target 
environment. This enabled us to develop the CSP model, design the target 
environment as well as the translation process. As our prototype translator is not 
capable of producing complete CSP scripts, we have used the manual translation in 
the following evaluation. Those familiar with CSP may consult Appendix B for the 
source before continuing.

The manual translation contains nine out of the sixteen Soar productions defining 
our Blocks World agent. There are three operator proposal rules and four operator 
application rules, and only two belief maintenance rules. Out of the seven rules 
excluded from the translation, one is an operator selection rule and four are 
standard state elaboration rules that are not used by our simple agent. The 
remaining two rules are monitor rules whose actions are just function calls (and 
would be ignored by our translator anyway).

In our translation, each Soar production expands to about six CSP firing rules on 
average with forty-seven rules in total. There are twenty-two belief maintenance 
rules, generated automatically by the target environment using a set 
comprehension. There are 89 facts in total, composed of 47 WMEs, 10 operator 
applications, 10 operator proposals, and 22 disable triggers (one for each WME that 
may be forgotten). Note that there are over twice the number of WMEs to disable 
triggers. This is because our Soar agent contains an explicit representation of the 
Blocks World goal that may be initialised (using “O-support”) to a large number of 
configurations but never forgotten.

For our evaluation we initially tried to model check the CSP script for the properties 
of section 3.1. This uncovered several issues with the CSP model including the 
need to prevent CSP firing rules from firing unless they are making “progress”, i.e. 
creating or removing WMEs. For the rules that can fire without making progress we 
now add an “oracle” process that prevents the rule from firing unless there is (or has 
been) progress to be made.

We found that our low-level treatment of belief maintenance introduced an 
explosion in the state space of the model. As belief maintenance is performed on 
the level of WMEs our model introduces a huge number of intermediate states that 
could not exist within a Soar system. In fact, the situation is so bad that our model 
checker FDR reaches 37 million states without finishing.

We have remedied this situation by giving belief maintenance precedence over 
normal rule firings and hiding the intermediate states. However, this is only a 
temporary solution to allow us to evaluate other parts of the CSP model. We need 
to pull the low-level model of belief maintenance up to at least the level of atomic 
rule firings. To do this we will make good use of the fundamental constraints of 
section 4.1 concerning “I-support” and “O-support”. The state-space of the Blocks 
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World CSP model with this temporary solution has between 4,000 and 20,000 
states and is easily model checked.

Our initial model checking for the healthiness properties of section 3.1 has been 
successful. We are currently able to check for all enabling-disabling loops, but only 
certain types of impasse (our decide module is not complete yet). To check for 
these properties we must always perform two separate checks, first one for the 
enabling-disabling loops and then one for impasses. In the first check we hide all 
rule-firing events and check for livelock. In the second check we simply check for 
deadlock.

Without any faults injected, the model checker did not detect any bad behaviour as 
expected from running Soar. We then proceeded to inject faults into the Soar 
productions, comparing the results of the model checker to that of running Soar. We 
found it hard to inject enabling-disabling loops but were able to detect the behaviour 
by adding conflicting rules. We confirmed the inadequacy of our decide module, but 
did find an interesting impasse as follows.

When we injected a fault into the apply*move-block*to-table, the model 
checker revealed a sequence of decisions (block movements) that led to an 
impasse. For the fault, we removed an action asserting the fact that when you move 
a block to the table the block below it becomes clear. As a block must be clear to be 
moved it is simple to see that the Soar agent could get into a state in which it thinks 
no blocks are clear, hence an impasse. The model checker found the following 
(simplified) sequence:

infer.(propose_initialise,{…},{…})
decide.Initialise
infer.(apply_initialise,{…},{…})
tock
infer.(propose_moveblock_toblock,{…},{…})
decide.Moveblock.b.a
infer.(apply_moveblock_fromtable_toblock,{…},{…})
tock
infer.(propose_moveblock_toblock,{…},{…})
decide.Moveblock.c.b
infer.(apply_moveblock_fromtable_toblock,{…},{…})
tock
infer.(propose_moveblock_totable,{…},{…})
decide.Moveblock.c.table
infer.(apply_moveblock_totable,{…},{…})
tock

Running Soar with the faulty production rule revealed the same impasse, but we 
had to run the Soar agent for longer. Although this is a trivial example, it does 
illustrate the usefulness of our analysis.

7.2 RoadSearch Case Study

In a first effort to analyse an software agent operating within a UAV context, we 
have revisited the implementation of a Soar agent that provides a plan for searching 
a network of roads for a moving road vehicle using multiple UAVs [2]. This agent 
was developed for use in piloted simulation trials examining the management of 
multiple UAVs from a single airborne operator.  

The RoadSearch problem is complex and open-ended problem, and the Soar agent 
solution adopted a relatively simple approach, appropriate to the reqiuirements of 
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piloted simulation.   In spite of this, its properties are representative of those 
anticipated in a fully-developed search and planning agent.

The algorithm uses map data, which describes sections of road as a series of 
latitude and longitude coordinates. From this, Soar rules establish which road 
sections are connected to which.  Given the position that the moving target was last 
sighted and the direction in which it was headed the Soar planning rules perform the 
following actions:

• Establish the road section that the vehicle was on at the time it was 
sighted, and its direction of travel, given the initial position and heading.

• Establish the network of road sections connected to the initial position in 
the direction of travel, and in the opposite direction.

• Issue a request for each available UAV to search a specified road 
section

• Issue the sequence of latitude/longitude coordinates to be used by each 
UAV route following algorithm

• Replan when the initial position, direction or search distance data 
changes.

Underlying the algorithm are the following assumptions:
• The vehicle is located on a road section at all times
• The vehicle is in the part of the road network specified by the original 

direction of travel, i.e. it has not doubled-back
• There is no implicit completion criterion, the UAVs must be switched to 

another task once the vehicle is located
• There are sufficient UAVs to cover the number of branches in the 

network

Unfortunately, the current limitations of our CSP model and prototype translator 
have prevented us from performing any detailed analysis of the RoadSearch Soar 
agent. However, we can report some statistics on the impact of our Soar language 
constraints (including current limitations) on the agent. These are as follows.

Out of 262 Soar productions, our Soar general-purpose parser managed to correctly 
parse and simplify all but one of the productions. The one production that did not 
parse contained an operator preference @ (reconsider) that is deprecated in the 
Soar language and we do not support. The remaining 261 productions failed on a 
number of constraints that we currently check. This is unsurprising since the 
algorithm was developed without analysis or certification in mind. However it is 
believed that the functionality of the algorithm can be expressed within the subset of 
Soar defined by the translator. The RoadSearch algorithm is being restructured by 
its developers, for separate reasons, and they are currently taking our constraints 
into account. The new Soar program should be able to perform more efficiently and 
also be analysable.

We also managed to auto-generate some documentation for the RoadSearch case 
study using the tool SoarDoc [7]. This enabled us to understand the structure of the 
Soar agent, namely its problem spaces and operators. We have started to produce 
datamaps for the various problem spaces but these are still incomplete and require 
analyst input to complete them. Figure 8 shows an initial auto-generated datamap 
for the deployment problem space. The datamap shows structure that could 
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potentially be exploited to formulate smaller checks that could then be composed 
into a check for the overall Soar program.

Figure 8 An auto-generated datamap of the deployment problem space.
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8 Conclusions
8.1 Summary

In this report enhancements to the CSP inference model have been made along 
with a set of healthiness properties for Soar programs that can be mechanically 
checked. However the ability to analyse Soar causes certain restrictions to apply to 
the type of Soar program that can be written. This report lists the restrictions along 
with the rationale for the restrictions.

The design of a prototype translator is also presented that essentially provides the 
semantics for the subset of the Soar language identified previously. The healthiness 
property of non-redundancy of rules is adopted as an objective characteristic of 
over-determined intelligence. The reason for this is that redundant rules indicate 
that the Soar program has become over specialised. A precise definition of rule 
redundancy has been given followed by the implications for detection and 
elimination.

The case study of the “Blocks World” has been translated into the present CSP 
inference model and analysed for the healthiness properties previously discussed. 
The RoadSearch algorithm for autonomous vehicles was also assessed, 
unfortunately it failed to meet the constraints necessary for analysis. Fortunately the 
algorithm is to be changed, for separate reasons, from the present monolithic 
program into many smaller interacting algorithms that should satisfy the analysis 
constraints.

8.2 Conclusions

The provision of a translator and the formulation of healthiness checks that can be 
automatically performed provide a novel and powerful analysis capability for Soar 
programs that express Machine Intelligence. The mapping embodied by the 
translator enables assurance arguments to be made about the translator and the 
semantics of the Soar subset to be validated. The healthiness checks that can be 
carried out mechanically will enable the analysis of Soar programs for typical 
problems that frequently affect their operation. Furthermore, the Soar program can 
also be assessed against critical properties that have been identified as part of a 
system safety case. Finally the formal representation of Soar programs written in 
the subset can be verifiably implemented on an FPGA via its semantic 
representation in CSP; the potential route for achieving this is discussed in [1].

Based on this work the demonstrations of autonomy with pre-learned intelligence 
can, in principle, be assessed. The most significant problem is the size of the state 
space that potentially must be explored. However the use of multiple agents should 
significantly mitigate this problem as well as speed up the Soar application, such as 
the road searching Soar application developed by Blue Bear Ltd. The translator 
also attempts to mitigate the size of the state space by identifying structure within 
the problem space that the Soar program operates. It is conjectured that the 
assessment of such a Soar program can be similarly structured into smaller checks 
that can be composed together to give an equivalent check of the whole system. 
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9 Recommendations
Based on the results reported in this report it is recommended that:

• the formal model of Soar in CSP is extended to:

• extend it to enable full analysis of “Blocks World”;

• extend it to fix the current limitations of section 3.2.2 and 4.2;

• consider issues such as the completeness of datamaps;

• extend the prototype translator to:

• complete the semantic analysis to check constraints and modelling 
assumptions;

• complete the code generation phase;

• perform an analysis of part of RoadSearch to:

• determine whether we can construct a complete datamap;

• investigate the input/output interface;

• determine the ease of eliminating false-negatives;

• validate the Soar language constraints as practical;

• investigate checking for over-determined intelligence by:

• validating on a simple agent for the  “Blocks World” problem;

• validating against the “RoadSearch” problem.
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A. Appendix A
# The Soar Production Grammar
# 
# The main lexical tokens are as follows:
#   
#   VARIABLE        = <[A-Za-z][A-Za-z0-9$%&*+-/:<=>?_]*>
#   SYM_CONSTANT    = [A-Za-z][A-Za-z0-9$%&*+-/:<=>?_]*
#   INT_CONSTANT    = [+-]?[0-9]+
#   FLOAT_CONSTANT  = [+-]?[0-9]+\.[0-9]*{[eE][+-]?[0-9]*}?
#   
# Compound literals include:
#   
#   '-->', '<<', '>>', '<>', '<=', '>=', '<=>'
#   
# Whitespace is [ \t\n\r\f]
# 
# Comments begin with '#' and extend to end of line
# 
# SYM_CONSTANTs may also appear between vertical bars '|'
# as in |hello world|.

%token      VARIABLE
%token      SYM_CONSTANT
%token      INT_CONSTANT
%token      FLOAT_CONSTANT

%%

prods:      prods production
|       production

;

# 'sp' '{' production_name lhs '-->' rhs '}'
production:  SYM_CONSTANT '{' SYM_CONSTANT lhs '-->' rhs '}'
;

# LEFT HAND SIDE (LHS)

lhs:    conds 
;

# <cond>+
conds:  conds cond

|   cond
;

cond:   minus positive_cond
;

positive_cond:  conds_for_one_id
|           '{' conds '}'

;

conds_for_one_id:   '(' id_test attr_value_tests ')'
;

# [state|impasse] [<test>]
id_test:    #empty

|       test
|     test test

;

test:   conjunctive_test | simple_test
;

conjunctive_test:   '{' simple_tests '}'
;

# <simple_test>+
simple_tests:   simple_tests simple_test
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|           simple_test
;

simple_test:    disjunctive_test | relational_test
;

disjunctive_test:   '<<' constants '>>'
;

# <constant>+
constants:  constants constant

|       constant
;

constant:   SYM_CONSTANT | INT_CONSTANT | FLOAT_CONSTANT
;

relational_test:    relation single_test
;

# [<relation>]
relation:   #empty

|       '<>' | '<' | '>' | '<=' | '>=' | '=' | '<=>'
;

single_test:    VARIABLE | constant
;

# <attr_value_test>*
attr_value_tests:   #empty

|               attr_value_tests attr_value_test
;

attr_value_test:    minus '^' attr_path  value_tests
;

# <attr_test> [. <attr_test>]*
attr_path:      attr_path '.' test

|           test
;

# <value_test>*
value_tests:    #empty

|           value_tests value_test
;

value_test:     test plus
|           conds_for_one_id plus

;

# RIGHT HAND SIDE (RHS)

rhs:   rhs_actions
;

# <rhs_action>*
rhs_actions:    #empty

|           rhs_actions rhs_action
;

rhs_action:     '(' VARIABLE attr_value_makes ')'
|           function_call

;

function_call:  '(' function_name rhs_values ')'
;

# <rhs_value>*
rhs_values:     #empty

|           rhs_values rhs_value
;

rhs_value:      constant
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|           function_call
|           VARIABLE

;

# <attr_value_make>+
attr_value_makes:   attr_value_makes attr_value_make

|               attr_value_make
;

attr_value_make:    '^' rhs_attr_path value_makes
;

# <rhs_value> [. <rhs_value>]*
rhs_attr_path:  rhs_attr_path '.' rhs_value

|           rhs_value
;

# <value_make>+
value_makes:    value_makes value_make

|           value_make
;

value_make:     rhs_value preferences
;

# "comma" signals a default preference of '+'
preferences:    comma

|           preference_specifiers
;

comma:  #empty
|   ','

;

# <preference_specifier>+
preference_specifiers:  preference_specifiers preference_specifier

 |                   preference_specifier
;

# NOTE:
# There is a reduce/reduce conflict here between "unary" and
# "binary" preference. The Soar User Manual specifies that "binary"
# preference should take precedence!

preference_specifier:   unary_preference comma
|                   binary_preference rhs_value

;

# not supporting '@' (reconsider) preference.
unary_preference: '+' | '-' | '!' | '~' | '>' | '=' | '<'
;

# not supporting '&' (??) preference.
binary_preference:  '>' | '=' | '<'
;

# [-]
minus:  #empty

|   '-'
;

# [+]
plus:  #empty

|   '+'
;

%%
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B. Appendix B
-- CSP script produced using Soar2Csp version 0.0!

-- < header info such list of all Soar production rules, perhaps some
-- documentation from soardoc (if available) >

-------------------------------------------------------------------------------
-- TYPES and CONSTANTS
-------------------------------------------------------------------------------

-- The following attributes and values are reserved:
-- My CSP:
-- infer wme propose tock deductions ddeductions
-- bool fired i ....
-- CSPm:
-- true false not and or 
-- if then else let within channel datatype nametype include assert print
-- length null head tail concat elem
-- union inter diff member card set
-- transparent chase normal extensions productions
-- ?? attribute embed module subtype ??

-- All user and reserved attributes (lowercase)
-- Notes:
-- "st" (state) is the 'null' attribute.
-- The use of '_' is limited to resolving multi-attributes.

datatype Attr = 
 -- user attributes
st | below | block | block_1 | block_2 | block_3 |
goal | initialised | inplace | name | on |

 -- reserved attributes
superstate | topstate

-- All user values (*distinct* from attributes!)
-- Note: "na" (not applicable) is the 'null' value.

datatype Val =
na | a | b | c | table | o | yes | no

-- All operators - declared as bespoke imperatives with parameters
-- Notes:
-- We know exactly what proposals will be made and what operators
-- are expected from the Soar production rules & datamap!
-- For rules that simply "piggy-back" off an operator (e.g. by name),
-- we may use the 'null' value "na" instead of blindly expanding rules.

datatype Operator = Moveblock.{a,b,c}.{a,b,c,table} | Initialise

-- propose, decide and signal an Operator as above.

channel propose, decide, operator : Operator

-- a working memory element (WME) (attribute path + value)
-- Notes:
-- to keep type rectangular we represent shorter paths using 'null' attribute
-- "st": 
-- <s> ^block.name a   = wme.st.block.name.a
-- <s> ^superstate nil = wme.st.st.superstate.nil

channel wme : Attr.Attr.Attr.Val

-- special "disable" action representing the forgetting a WME

channel Disable : {|wme|}
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-- Some standard functions

pick({x}) = x

-------------------------------------------------------------------------------
-- THE SOAR DATAMAP
-------------------------------------------------------------------------------

-- The multi-attributes

-- whenever we know an attribute may be a multi-valued attribute
-- we use the 'multi' function to return the (suffix'd) attributes.

-- multi1 : Attr        -> Attr
-- multi2 : Attr.Attr   -> Attr.Attr

multi2(st.block)    = {st.attr_ | attr_ <- {block_1,block_2,block_3}}
multi2(goal.block)  = {goal.attr_ | attr_ <- {block_1,block_2,block_3}}

-- multi(st.st.mattr_) = {st.st.attr_  | attr_ <- multi1(mattr_)}
-- multi(st.mattr_)    = {st.attr_     | attr_ <- multi2(mattr_)}

-- define attribute values
-- vals1 : Attr             -> Set(Val)
-- vals : Attr.Attr        -> Set(Val)
-- vals : Attr.Attr.Attr   -> Set(Val)

-- some value types
OnVals = {a,b,c,table}
BelowVals = {a,b,c,o}

vals1(_)                = {}

vals2(block_1.name)     = {a}
vals2(block_1.on)       = OnVals
vals2(block_1.below)    = BelowVals
vals2(block_1.inplace)  = {yes}
vals2(block_2.name)     = {b}
vals2(block_2.on)       = OnVals
vals2(block_2.below)    = BelowVals
vals2(block_2.inplace)  = {yes}
vals2(block_3.name)     = {c}
vals2(block_3.on)       = OnVals
vals2(block_3.below)    = BelowVals
vals2(block_3.inplace)  = {yes}

vals3(goal.block_1.name)     = {a}
vals3(goal.block_1.on)       = OnVals
vals3(goal.block_1.below)    = BelowVals
vals3(goal.block_2.name)     = {b}
vals3(goal.block_2.on)       = OnVals
vals3(goal.block_2.below)    = BelowVals
vals3(goal.block_3.name)     = {c}
vals3(goal.block_3.on)       = OnVals
vals3(goal.block_3.below)    = BelowVals

vals(st.st.attr_)   = vals1(attr_)
vals(st.attr_)      = vals2(attr_)
vals(attr_)         = vals3(attr_)

-------------------------------------------------------------------------------
-- SOAR PRODUCTION RULES
-------------------------------------------------------------------------------

-- The names of all Soar production rules
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-- Note: We use '_' for '*' and filter out non alphanumerics such as '-'.

datatype RuleName =
observe_block_inplace_1 | observe_block_inplace_2 | 
propose_moveblock_toblock | propose_moveblock_totable |

selection_dontmove_inplace |
apply_moveblock_totable | apply_moveblock_fromtable_toblock |

apply_moveblock_fromblock_toblock |
propose_initialise | apply_initialise |
test_rule |
belief_maintenance

-- nametype Rule = (RuleName,{|wme,disable,operator|},{|wme,disable,propose|})

-- The actual rules
-- Note: We use the first two parts of the production name for the name of the CSPm
-- set, with an incremental suffix for duplicates, e.g. "observe_block_1".

-----------------------------------
-- sp {observe*block*in-place*1
-- (state <s> ^goal.block <gb>)
-- (<gb> ^name <n> ^on table)
-- (<s> ^block <b>)
-- (<b> ^name <n> ^on table)
-- -->
-- (<b> ^in-place 1)}
-----------------------------------

-- expands to three rules.

observe_block_1 = {
(observe_block_inplace_1,

 {
wme.GB.name.N1,
wme.GB.on.table,
wme.B.name.N2,
wme.B.on.table

},
{

wme.B.inplace.yes
}

) | GB <- multi2(goal.block), B <- multi2(st.block),
N1 <- vals(GB.name), N2 <- vals(B.name),
N1 == N2

}

-----------------------------------
-- sp {observe*block*in-place*2
-- (state <s> ^goal.block <gb>)
-- (<gb> ^name <n> ^on <on>)
-- (<s> ^block <b1> <b2>)
-- (<b1> ^name <n> ^on <on>)
--  (<b2> ^name <on> ^in-place)
-- -->
-- (<b1> ^in-place 1)}
-----------------------------------

-- expands to nine rules, three of which represent (presumably!) impossible
-- goals - "a on a", "b on b", "c on c"
-- we could refine the datamap by removing these possibilities!

observe_block_2 = {
(observe_block_inplace_2,

{
wme.GB.name.N1,
wme.GB.on.O1,
wme.B1.name.N2,
wme.B1.on.O2,
wme.B2.name.O3,
wme.B2.inplace.I1

 },
{
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wme.B1.inplace.yes
}

) | GB <- multi2(goal.block), B1 <- multi2(st.block), B2 <- multi2(st.block),
N1 <- vals(GB.name), O1 <- vals(GB.on),
N2 <- vals(B1.name), O2 <- vals(B1.on),
O3 <- vals(B2.name), I1 <- vals(B2.inplace),
N1 == N2, O1 == O2, O1 == O3

}

---------------------------------------------------
-- sp {elaborate*state*name
-- (state <s> ^superstate.operator.name <name>)
-- -->
-- (<s> ^name <name>)
-- }
---------------------------------------------------

-----------------------------
-- elaborate_1 = {
-- (elaborate_state_name,
-- {
-- superstate_???
-- },
-- {
-- ????
--
-- }
-- ) | ????
-- }
-----------------------------

-------------------------------------------------------------------------------
-- MOVE-BLOCK.SOAR
-------------------------------------------------------------------------------

-----------------------------------------------------
-- sp {propose*move-block*to-block
-- (state <s> ^block <block> {<> <block> <dest>})
-- (<block> ^name <a> ^below o)
-- (<dest>  ^name <b> ^below o)
-- -->
-- (<s> ^operator <o> + =)
-- (<o> ^name move-block
-- ^block <a>
-- ^destination <b>)}
-----------------------------------------------------

-- expands to six rules
-- N.B. we translate the operator preference to our bespoke form
-- N.B. preferences beyond '=' (indifferent) are ignored as yet!

propose_moveblock_1 = {
(propose_moveblock_toblock,

{
wme.B1.name.A1,
wme.B1.below.o,
wme.D1.name.B2,
wme.D1.below.o

},
{

propose.Moveblock.A1.B2
}

) | B1 <- multi2(st.block), D1 <- multi2(st.block), B1 != D1,
A1 <- vals(B1.name), B2 <- vals(D1.name)

}

------------------------------------------------
-- sp {propose*move-block*to-table
-- (state <s> ^block <block>)
-- (<block> ^name <a> ^on <> table ^below o)
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-- -->
-- (<s> ^operator <o> + =)
-- (<o> ^name move-block
-- ^block <a>
-- ^destination table)}
------------------------------------------------

-- expands to nine rules, three of which represent (presumably!) impossible
-- situations ("a on a", "b on b", "c on c")
-- N.B. we translate the operator preference to our bespoke form
-- N.B. preferences beyond '=' (indifferent) are ignored as yet!

propose_moveblock_2 = {
(propose_moveblock_totable,

{
wme.B1.name.A1,
wme.B1.on.O1,
wme.B1.below.o

},
{

propose.Moveblock.A1.table
}

) | B1 <- multi2(st.block),
A1 <- vals(B1.name), O1 <- vals(B1.on),
O1 != table

}

----------------------------------------
-- sp {selection*dont-move*in-place
-- (state <s> ^operator <o> +)
-- (<o> ^name move-block ^block <n>)
-- (<s> ^block <b>)
-- (<b> ^name <n> ^in-place)
-- -->
-- (<s> ^operator <o> <)}
----------------------------------------

-- do we bother modelling operator preferences??
-- if we do then can we use belief maintenance as for normal I-support rules??
-- i.e. using "Disable.propose.??"

-------------------------------------------------------
-- selection_1 = {
--  (selection_dontmove_inplace,
-- {
-- propose.Moveblock.N1.D1
-- B1.name.N2,
-- B1.inplace.I1
-- },
-- {
-- ?? operator pref ??
-- }
-- ) | B1 <- multi(block.na.na),
--  N1 <- {a,b,c}, D1 <- {a,b,c,table},
-- N2 <- vals(B1.name), I1 <- vals(B1.inplace),
-- N1 == N2
-- }
-------------------------------------------------------

-------------------------------------------------------------------------------
-- APPLY.SOAR
-------------------------------------------------------------------------------

----------------------------------------------
-- sp {apply*move-block*to-table
-- (state <s> ^operator <op>
-- ^block <moving> {<> <moving> <origin>})
-- (<op> ^name move-block
-- ^block <m>
-- ^destination table)
-- (<moving> ^name <m> ^on <o> ^below o)
-- (<origin> ^name <o>         ^below <m>)
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-- -->
-- (<moving> ^on table ^on <o> -)
-- (<origin> ^below o  ^below <m> -)}
----------------------------------------------

-- expands to six rules, all of which *must* represent the possible scenarios
-- N.B. these rules should be expanded again if we require only *one* consequent!

-- note that we put the disables right in the "o-support" inference!
--  - we had better know about it if there is a clash between positive and
-- negative support for a WME!
--  - these are the "trigger" disables and are *not* forgotten by destructive
-- rules (but may be reset by positive "o-support"!)
--  - wmes that appear within the RHS of "o-support" rules are considered
-- to be "o-support" wmes
--  - "o-support" wmes (& Disable.wme) behave differently to normal wmes:
--  - "o-support" Disable.wme's are *not* forgotten by destructive
-- rules or "I-support" normal rules,
-- but must be reset by positive ("O-support") rules!
--  - hence, conflicts between "I-support" & (negative) "o-support" could come out as
-- livelock?? i.e. the "I-support" inference pulls up the wme, then the
-- Disable.wme pulls it down, then the "I-support" inference pulls it up
-- again...
--  - what about conflicts between "I-support" and positive "O-support"??
--  - need to add some more Soar semantics!!

apply_moveblock_1 = {
 --------------------------------------
 -- (test_rule,
 -- {
 -- operator.Moveblock.a.table
 -- },
 -- {
 -- wme.st.block_1.on.c
 -- }
 -- ),
 -- (test_rule,
 -- {
 -- operator.Moveblock.a.table
 -- },
 -- {
 -- Disable.wme.st.block_1.on.c
 -- }
 -- ),
 --------------------------------------
 -------------------------------------------
 -- (test_rule,
 -- {
 -- operator.Moveblock.a.table
 -- },
 -- {
 -- Disable.wme.st.st.initialised.no
 -- }
 -- ),            
 -------------------------------------------
(apply_moveblock_totable,

 {
operator.Moveblock.M1.table,
wme.B1.name.M2,
wme.B1.below.o,
wme.B1.on.O1,
wme.B2.name.O2,
wme.B2.below.M3

},
{

 -- removal not caught, in soar results in only offering last operator 
again!

 -- i.e. operator-no-change impasse 
wme.B1.on.table,

 -- removal caught, results in deadlock & no proposals!
wme.B2.below.o,

 -- removal not caught, in soar as above
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Disable.wme.B1.on.O1,
 -- removal not caught, in soar no issue either!
Disable.wme.B2.below.M1

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B1 != B2,

M1 <- {a,b,c},
M2 <- vals(B1.name), O1 <- vals(B1.on),
O2 <- vals(B2.name), M3 <- vals(B2.below),
M1 == M2, M2 == M3, O1 == O2

}

----------------------------------------------
-- sp {apply*move-block*from-table*to-block
-- (state <s> ^operator <op>
--  ^block <moving> {<> <moving> <dest>})
-- (<op> ^name move-block
-- ^block <m>
-- ^destination { <> table <d> })
-- (<moving> ^name <m> ^on table ^below o)
-- (<dest>   ^name <d>           ^below o)
-- -->
-- (<moving> ^on <d>    ^on table -)
-- (<dest>   ^below <m> ^below o -)}
----------------------------------------------

-- again, expands to six rules, all of which *must* represent the possible scenarios
-- N.B. these rules should be expanded (*2) again if we require only *one* 
consequent!

apply_moveblock_2 = {
(apply_moveblock_fromtable_toblock,

{
operator.Moveblock.M1.D1,
wme.B1.name.M2,
wme.B1.on.table,
wme.B1.below.o,
wme.B2.name.D2,
wme.B2.below.o

},
{

wme.B1.on.D1,
wme.B2.below.M1,
Disable.wme.B1.on.table,
Disable.wme.B2.below.o

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B1 != B2,
 M1 <- {a,b,c}, D1 <- {a,b,c,table}, D1 != table,

M2 <- vals(B1.name), D2 <- vals(B2.name),
M1 == M2, D1 == D2

}

-----------------------------------------------------------
-- sp {apply*move-block*from-block*to-block
-- (state <s> ^operator <op>
-- ^block <moving> {<> <moving> <origin>}
-- {<> <moving> <> <origin> <dest>})
-- (<op> ^name move-block
-- ^block <m>
-- ^destination { <> table <d> })
-- (<moving> ^name <m> ^on { <> table <o> } ^below o)
-- (<dest>   ^name <d>                      ^below o)
-- (<origin> ^name <o>                      ^below <m>)
-- -->
-- (<moving> ^on <d>    ^on <o> -)
-- (<dest>   ^below <m> ^below o -)
-- (<origin> ^below o   ^below <m> -)}
-----------------------------------------------------------

-- again, expands to six rules, all of which *must* represent the possible scenarios
-- N.B. these rules should be expanded (*3) again if we require only *one* 
consequent!
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apply_moveblock_3 = {
(apply_moveblock_fromblock_toblock,

{
operator.Moveblock.M1.D1,
wme.B1.name.M2,
wme.B1.on.O1,
wme.B1.below.o,
wme.B2.name.D2,
wme.B2.below.o,

 wme.B3.name.O2,
wme.B3.below.M3

},
{

wme.B1.on.D1,
wme.B2.below.M1,
wme.B3.below.o,
Disable.wme.B1.on.O1,
Disable.wme.B2.below.o,
Disable.wme.B3.below.M1

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B3 <- multi2(st.block),

B1 != B2, B3 != B1, B3 != B2,
M1 <- {a,b,c}, D1 <- {a,b,c,table}, D1 != table,
M2 <- vals(B1.name), O1 <- vals(B1.on),
D2 <- vals(B2.name),
O2 <- vals(B3.name), M3 <- vals(B3.below),
D1 != table, O1 != table, M1 == M2, M2 == M3, D1 == D2, O1 == O2

}

-------------------------------------------------------------------------------
-- MONITOR.SOAR
-- all have no real RHS action!
-------------------------------------------------------------------------------

----------------------------------------------------
-- sp {monitor*goal*achieved
-- (state <s> ^goal <g>)
-- (<g> ^block <ga> <gb> <gc>)
-- (<ga> ^name a ^on <a1> ^below <a2>)
-- (<gb> ^name b ^on <b1> ^below <b2>)
-- (<gc> ^name c ^on <c1> ^below <c2>)
-- (<s> ^block <a> <b> <c>)
-- (<a> ^name a ^on <a1> ^below <a2>)
-- (<b> ^name b ^on <b1> ^below <b2>)
-- (<c> ^name c ^on <c1> ^below <c2>)
-- -->
-- (write (crlf) |The problem has been solved.|)
-- (halt)}
----------------------------------------------------

-------------------------------------------------------------------------------
-- INITIALISE.SOAR
-------------------------------------------------------------------------------

---------------------------------------------------------------------
-- sp {propose*initialise
-- (state <s> -^initialised)
-- -->
-- (<s> ^operator <o> + =)
-- (<o> ^name initialise)}
---------------------------------------------------------------------

-- as we don't handle negated attribute conditions yet,
-- we convert (by hand!) "-^initialised" to "^initialised no" and make sure
-- wme.st.st.initialised.no is initially true!!

propose_initialise_1 = {
(propose_initialise,

{
wme.st.st.initialised.no
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},
{

propose.Initialise
}

)
}

---------------------------------------------------------------------
-- sp {apply*initialise
-- (state <s> ^operator.name initialise)
-- -->
-- (<s> ^initialised yes)
-- # Initial State
-- (<s> ^block <a> <b> <c>)
-- (<a> ^name a ^on table ^below o)
-- (<b> ^name b ^on table ^below o)
-- (<c> ^name c ^on table ^below o)
-- (write (crlf) |Initial state has A, B & C on the table.|)
-- # Goal State
-- (<s> ^goal <g>)
-- (<g> ^block <ga> <gb> <gc>)
-- (<ga> ^name a ^on b     ^below o)
-- (<gb> ^name b ^on c     ^below a)
-- (<gc> ^name c ^on table ^below b)
-- (write (crlf) |The goal is to get A on B on C on the table.|)}
---------------------------------------------------------------------

-- as we don't handle negated attribute conditions yet (see propose*initialise)
-- we add (by hand!) "^initialised no -" to the RHS actions.

-- note the implicit "<a> != <b> != <c>" when creating multi-attribute WMEs!
-- we need to resolve multi-attributes to unique solutions or we get non-det
-- rules!!

apply_initialise_1 = {
(apply_initialise,

{
operator.Initialise

},
{

wme.st.st.initialised.yes,
Disable.wme.st.st.initialised.no,
wme.B1.name.a,
wme.B1.on.c,
wme.B1.below.o,
wme.B2.name.b,
wme.B2.on.table,
wme.B2.below.o,
wme.B3.name.c,
wme.B3.on.table,
wme.B3.below.a,
wme.GA.name.a,
wme.GA.on.b,
wme.GA.below.o,
wme.GB.name.b,

 wme.GB.on.c,
wme.GB.below.a,
wme.GC.name.c,
wme.GC.on.table,
wme.GC.below.b

}
) | B1 <- multi2(st.block), B2 <- multi2(st.block), B3 <- multi2(st.block),

B1 != B2, B3 != B1, B3 != B2,
member(a,vals(B1.name)), member(table,vals(B1.on)), member(o,vals(B1.below)),
member(b,vals(B2.name)), member(table,vals(B2.on)), member(o,vals(B2.below)),
member(c,vals(B3.name)), member(table,vals(B3.on)), member(o,vals(B3.below)),
GA <- multi2(goal.block), GB <- multi2(goal.block), GC <- multi2(goal.block),
GA != GB, GC != GB, GC != GA,
member(a,vals(GA.name)), member(b,vals(GA.on)), member(o,vals(GA.below)),
member(b,vals(GB.name)), member(c,vals(GB.on)), member(a,vals(GB.below)),
member(c,vals(GC.name)), member(table,vals(GC.on)), member(b,vals(GC.below))
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}

-------------------------------------------------------------------------------
-- BELIEF MAINTENANCE RULES
-------------------------------------------------------------------------------

-- Calculate "destructive" belief maintenance rules from (I-support) rule 
dependencies.
--
-- Each rule implements the forgetting ("disabling") of an WME and its (potential)
-- immediate effects on dependent "I-support" rules (i.e. new "disable" actions).
-- The rules have semantics: (<dis>, <wme> --> <cons>)
-- <dis>, <wme> |- not* <dis>, not <wme>, <cons>
-- where <dis> is the "disable" action, <wme> is the WME, and <cons> is a
-- set of dependent "disable" actions (possibly empty).
-- * When <dis> is an "O-support" WME, the consequent is actually "<dis>" as we
-- expect forgetting of an "O-support" WME to be persistent (until an "O-support"
-- rule explicitly cancels the "disable").
--
-- Conflicts:
--
-- Although we currently assume a given WME will either have "O-support" (it is
-- added/removed by an "O-support" rule) or "I-support" (it is added by an
-- "I-support" rule), we may currently detect conflicts between "O-support" rules.
-- Here, two "O-support" rules compete to forget and recall an "O-support" WME
-- and we may end up with non-determinism (one rule disables the other) or
-- livelock as each undoes the actions of the other.
--
-- If an "I-support" rule gives (positive) support for an "O-support" WME then we
-- may detect similar conflicts as above (likely livelock), or worse, the ensuing
-- "disable" action may forget previous (positive) "O-support" - masking possible
-- behaviour! For this reason, we assume a given WME will either have "O-support"
-- *or* "I-support". This may be confirmed with a simple syntactic check!
--
-- If we want to model this issues of support, we must answer some questions:
-- 1. What happens when the positive "I-support" is lost?
--  - the "disable" action for an "O-support" WME is currently permanent
-- 2. What happens when there was previous positive "O-support"? how can we know?
-- do we care?
--
-- Algorithm:
--
-- Assuming any (I-support) rule may be retracted in its life-time, we construct
-- the set of all WMEs that may be forgotten from the consequents of these rules
-- and any explicit "disable" actions in a set of (O-support) trigger rules.
--
-- Each "starter" WME then contributes a (belief maintenance) rule as above with
-- all its (potentially) dependent (I-support) rule's consequents as "disable"
-- actions (excluding itself). 
--  
-- This is a pessimistic, simple model that could be refined and developed.

dependencies(triggers_,rules_) =
 let

starters_ = Union({  { t_ | (_,_,C_) <- triggers_, Disable.t_ <- C_ },
{ wme.i | (_,_,C_) <- rules_, wme.i <- C_ } })

within
{(belief_maintenance,

{
Disable.F_,
F_

},
{

Disable.wme.c_ | (_,A_,CC_) <- rules_, member(F_,A_), wme.c_ <- CC_,
(wme.c_) != F_

}
) | F_ <- starters_

}
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-- example: if one block is no longer in place then any block sitting on it
-- may no longer be in place! (see observe*block*in-place*2)
---------------------------------------
-- (Dis.???,
-- {Disable.wme.st.block_3.inplace.yes,
-- wme.st.block_3.inplace.yes},
-- {Disable.wme.st.block_2.inplace.yes,
-- Disable.wme.st.block_1.inplace.yes}
-- )
---------------------------------------

-------------------------------------------------------------------------------
-- SOAR MODEL
-------------------------------------------------------------------------------

-- A Soar production rule is an "O-support" rule iff it tests for an operator in
-- the LHS, else it is an "I-support" rule.
-- A Soar working memory element (WME) is an "O-support" WME iff it appears in the
-- RHS of an "O-support" rule, else it is an "I-support" WME.
--
-- O-SUPPORT Rules:
--
-- "O-support" rules have semantics: (<operator>, <wmes> --> <cons>)
-- <operator>, <wmes>, not <cons> |- <cons>
-- where <wmes> is a set of any WMEs (possibly empty) and <cons> is a set of
-- WMEs and "disable" actions.
--
-- Note that we require 'not <cons>', i.e. one or more of the consequents are
-- false. This prevents the rule from continually firing unless progress is being
-- made, hence 'livelock' will not occur unless caused by rule interactions.
--
-- When the rule has only one consequent (positive or negative), then it is a
-- simple matter to prevent the rule from firing unnecessarily.
-- When the rule has multiple consequents, then we require coordination to get
-- the required behaviour. Dividing up the rule into multiple rules, each with one
-- consequent proved problematic as "O-support" rules have negative actions.
-- To get this behaviour we use instead an 'oracle' that insists that one of the
-- consequents of such a rule must be 'false' for the rule to re-fire. Note that
-- this only guarantees that the consequents *were* previously false.
-- For "blocks world" we only have to use oracles for "apply_2" rules as the other
-- "O-support" rules are incapable of firing while making no progress, under the
-- assumption that negative actions are given priority over positive actions. Here,
-- all the rules contain a negative action undermining a condition.
--
-- I-SUPPORT Rules:
--
-- "I-support" rules have semantics: (<wmes> --> <cons>)
-- <wmes>, not <cons> |- <cons>
-- where <wmes> and <cons> are sets of WMEs, where <cons> only contains
-- "I-support" WMEs.
--
-- Again, we require 'not <cons>', i.e. one or more of the consequents are
-- false, to prevent the rule from continually firing unless progress is
-- being made.
--
-- Again, the issue of 'not <cons>' and multiple consequents has to be resolved.
-- However, as "I-support" rules contain no negative actions we have decided to
-- split up "I-support" rules with multiple consequents by default. We may then
-- manually apply 'oracles' to such rules that cause (hopefully rare)
-- "false-negatives". Also, "I-support" rules are maintained by implicit
-- belief maintenace, the monitoring of the consequents will be harder.
-- For instance, one consequent could enable an "O-support" rule disabling the
-- rules before another consequent could enable an operator proposal, hence a
-- "false" impasse. 

-- All the Soar production rules as above.
the_rules = Union({

observe_block_1,observe_block_2,
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propose_moveblock_1,propose_moveblock_2,
apply_moveblock_1,apply_moveblock_2,apply_moveblock_3,
propose_initialise_1,apply_initialise_1

})

-- "O-support" rules (see above for definition)
o_support = { (R_,A_,C_) | (R_,A_,C_) <- the_rules, inter(A_,{|operator|}) != {}}

-- "I-support" rules
i_support = diff(the_rules,o_support)

-- "O-support" WMEs (see above for definition)
o_support_wme = Union({ C_ | (_,_,C_) <- o_support})
o_supported(i) = member(wme.i,o_support_wme) or member(Disable.wme.i,o_support_wme)

deductions = the_rules
ddeductions = dependencies(o_support,i_support)

-- inferences

channel infer : union(deductions,ddeductions)

channel tock

-- count things...

-- Rules (69): 19 o_support, 28 i_support, 22 belief maintenance

-- 89!! (
all_facts = Union({ A_,C_ | (_,A_,C_) <- union(deductions,ddeductions)})

-- 22
all_disable = inter(all_facts,{|Disable|})

-- 10
all_proposals = inter(all_facts,{|propose|})

-- 10
all_operators = inter(all_facts,{|operator|})

-- 47!!
all_wmes = inter(all_facts,{|wme|})

-------------------------------------------------------------------------------
-- WORKING MEMORY ELEMENT (WME)
-------------------------------------------------------------------------------

alpha_WME(i) = {
infer.(R_,A_,C_) | (R_,A_,C_) <- union(deductions,ddeductions),

member(wme.i,C_) or member(wme.i,A_)
}

-- blocks all normal inferences with 'i' in antecedents
WME(i,false) =

let
Infer_from      = {(R_,A_,C_) | (R_,A_,C_) <- deductions, member(wme.i,C_)}
Infer_from_d    = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(wme.i,C_)}

within
 -- learn 'i'
( [] r_ <- Infer_from @ infer.r_ -> WME(i,true) )

[]
 -- learn 'i' - is this ever needed?
( [] r_ <- Infer_from_d @ infer.r_ -> WME(i,true) )

-- blocks all normal inferences with *only* 'i' in consequents
WME(i,true) =

let
Applicable      = {(R_,A_,C_) | (R_,A_,C_) <- deductions, member(wme.i,A_)

or (card(C_) > 1 and member(wme.i,C_))}
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Forget          = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(wme.i,A_)}
within

 -- allow learn 'c of C'
( [] r_ <- Applicable @ infer.r_ -> WME(i,true) )

[]
 -- forget 'i'
( [] r_ <- Forget @ infer.r_ -> WME(i,false) )

-------------------------------------------------------------------------------
-- DISABLE ACTION
-------------------------------------------------------------------------------

-- A "disable" action is a similar to a WME, but differs as follows:
--  - a "disable" action is cancelled implicitly by a normal inference
-- of the right type, i.e. "O-support" for "O-support" WMEs
--  - an "O-support" (persistent) "disable" action is not forgotten by a
-- "destructive" inference when one of the antecedents

alpha_DISABLE(i) =
let

 -- the rules that may request or cancel a "disable" action.
Rules = if o_supported(i) then o_support else i_support

within
Union({

{ infer.(R_,A_,C_) | (R_,A_,C_) <- union(deductions,ddeductions),
member(Disable.wme.i,C_) or member(Disable.wme.i,A_) },

{ infer.(R_,A_,C_) | (R_,A_,C_) <- Rules, member(wme.i,C_)}
})

-- blocks all normal inferences (when true) with *only* 'disable.i' in consequents
DISABLE(i,bool) =

let
 -- the rules that may request or cancel a "disable" action.
Rules   = if o_supported(i) then o_support else i_support
Request = {(R_,A_,C_) | (R_,A_,C_) <- Rules, (not bool or card(C_) > 1),

member(Disable.wme.i,C_)}
Cancel  = {(R_,A_,C_) | (R_,A_,C_) <- Rules, member(wme.i,C_)}

 -- the rules that trigger and perform the "disable" action.
Trigger = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(Disable.wme.i,C_)}
Perform = {(R_,A_,C_) | (R_,A_,C_) <- ddeductions, member(Disable.wme.i,A_)}

within
 -- request or trigger a "disable" action.
( [] r_ <- union(Request,Trigger) @ infer.r_ -> DISABLE(i,true) )

[]
 -- cancel a "disable" action.
( [] r_ <- Cancel @ infer.r_ -> DISABLE(i,false) )

[]
 -- perform a "disable" action.
bool & ( [] r_ <- Perform @ infer.r_ -> DISABLE(i,o_supported(i)) )

-------------------------------------------------------------------------------
-- ORACLE
-------------------------------------------------------------------------------

-- When an "O-support" rule fires, prevent it from continually firing unless
-- progress is being made, hence 'livelock' should not occur unless caused by
-- rule interactions.
--
-- The 'oracle' only allows a rule to re-fire when one of its consequents has
-- previously been 'false'. As "O-support" WMEs are explicitly added and removed,
-- we may simply monitor the firing of other "O-support" rules that add or remove
-- the consequents (and *not* the belief maintenance rules!)

alpha_ORACLE(rule_@@(_,_,RHS_)) =
let

Pos = { infer.rule_, infer.(R_,A_,C_) | (R_,A_,C_) <- o_support, wme.F_ <-
RHS_,

member(Disable.wme.F_,C_) }
Neg = { infer.(R_,A_,C_) | (R_,A_,C_) <- o_support, Disable.wme.F_ <- RHS_,

 member(wme.F_,C_) }
within

union(Pos,Neg)



UNCLASSIFIED
QinetiQ Proprietary

QinetiQ/FST/CR041616/1.0 Page 58
QinetiQ Proprietary

UNCLASSIFIED

ORACLE(rule_@@(_,_,RHS_),fired_) =
let

Pos = { (R_,A_,C_) | wme.F_ <- RHS_, (R_,A_,C_) <- o_support,
member(Disable.wme.F_,C_) }

Neg = { (R_,A_,C_) | Disable.wme.F_ <- RHS_, (R_,A_,C_) <- o_support,
member(wme.F_,C_) }

within
 -- a rule may fire once
not(fired_) & infer.rule_ -> ORACLE(rule_,true)

[]
 -- the rule may fire again once one of its consequents goes 'false'
( [] r_ <- union(Pos,Neg) @ infer.r_ -> ORACLE(rule_,false) )

 
-------------------------------------------------------------------------------
-- INFERENCES
-------------------------------------------------------------------------------

INFERENCES(initials_) =
let

facts_      = Union({ A_,C_ | (_,A_,C_) <- union(deductions,ddeductions)})
wmes_       = { i | wme.i <- facts_ }
disables_   = { i | Disable.wme.i <- facts_ }

 -- we add oracles to "O-support" rules that have multiple consequents
 -- and do not disable themselves
oracles_    = { (R_,A_,C_) | (R_,A_,C_) <- o_support, card(C_) > 1,

Disable.wme.F_ <- C_, not member(wme.F_,A_) } 
alpha_WMES  = Union({alpha_WME(i) | i <- wmes_})
WMES        = || i : wmes_ @ [alpha_WME(i)] WME(i,member(i,initials_))
alpha_DISABLES  = Union({alpha_DISABLE(i) | i <- disables_})
DISABLES    = || i : disables_ @ [alpha_DISABLE(i)] DISABLE(i,false)
alpha_ORACLES   = Union({alpha_ORACLE(r_) | r_ <- oracles_})
ORACLES     = || r_ : oracles_ @ [alpha_ORACLE(r_)] ORACLE(r_,false)

within
(WMES [alpha_WMES || alpha_DISABLES] DISABLES)

[union(alpha_WMES,alpha_DISABLES) || alpha_ORACLES] ORACLES

-------------------------------------------------------------------------------
-- DECIDE MODULE
-------------------------------------------------------------------------------

-- Model the decision cycle which maps operator proposals to operator decisions,
-- conveys external input/output to and from the system and ??
--
-- The decision cycle consists of separate "phases" of production rule firing,
-- with one phases separated from the next by system aquiescence (no more rules
-- are eligible to fire).
--
-- Although we could perhaps 

alpha_DECIDE = { infer.(R_,A_,C_) | (R_,A_,C_) <- deductions,
inter({|propose,operator|},union(A_,C_)) != {} }

-- maps proposals to applicable operator inferences before tock'ing.

DECIDE = 
let

proposals(op_) = { (R_,A_,C_) | (R_,A_,C_) <- deductions, 
member(propose.op_,C_) }

within
( [] op_ : Operator, r_ : proposals(op_) @ infer.r_ -> decide.op_ -> 

DECIDED(op_) )

DECIDED(op) =
let

operators = { (R_,A_,C_) | (R_,A_,C_) <- deductions, member(operator.op,A_) }
within
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( [] r_ <- operators @ infer.r_ -> DECIDED(op) )
[]

tock -> DECIDE

normal_goal = {
st.st.initialised.yes,
goal.block_1.name.a,
goal.block_1.on.b,
goal.block_1.below.o,
goal.block_2.name.b,
goal.block_2.on.c,
goal.block_2.below.a,
goal.block_3.name.c,
goal.block_3.on.table,
goal.block_3.below.b,
st.block_1.name.a,
st.block_1.on.table,
st.block_1.below.o,
st.block_2.name.b,
st.block_2.on.table,
st.block_2.below.o,
st.block_3.name.c,
st.block_3.on.table,
st.block_3.below.o

}

no_goal = {
st.st.initialised.no

}

initially_true = no_goal

transparent chase

belief_rules = { infer.r_ | r_ <- ddeductions }

CHASED = chase(INFERENCES(initially_true) \ belief_rules)

-- this process is deterministic!
TEST = CHASED [| alpha_DECIDE |] DECIDE

LIVELOCK_TEST = TEST \ { infer.r_ | r_ <- Union({deductions}) }

SYSTEM = INFERENCES(initially_true) [| alpha_DECIDE |] DECIDE
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